

Motivation

First-order logical rules are useful for knowledge base reasoning.

• Interpretable

• Transferrable to unseen entities.

- Learning probabilistic logical rules is difficult -- it requires learning
- the discrete structure, i.e. the particular set of rules to include, and
- the continuous parameters, i.e. confidence associated with each rule.

Our Approach

An end-to-end differentiable framework ---Neural Logic Programming (Neural LP).

TensorLog operators

- E = set of entities. R = set of binary relations.
- For each entity i, define v_i in $\{0, 1\}^{|E|}$.
- For each relation R, define M_R in $\{0, 1\}^{|E| \times |E|}$ where the (i, j) entry is 1 if and only if R(i, j),

Key idea

A neural controller that **learns to compose** TensorLog operators.

Differentiable Learning of Logical Rules for Knowledge Base Reasoning

Fan Yang, Zhilin Yang, William W. Cohen Carnegie Mellon University {fanyang1, zhiliny, wcohen } @cs.cmu.edu

Learning -- Objective function

Learn weighted chain-like logical rules to reason over the knowledge base.

 α query (Y, X) $\leftarrow R_n$ (Y, Z_n) $\wedge \cdots \wedge R_1$ (Z_1 , X)

Using TensorLog operators, the **objective** is:

 $\max_{\{\alpha_l,\beta_l\}} \sum_{\{\mathbf{x},\mathbf{y}\}} \operatorname{score}(\mathbf{y} \mid \mathbf{x}) = \max_{\{\alpha_l,\beta_l\}} \sum_{\{\mathbf{x},\mathbf{y}\}} \mathbf{v}_{\mathbf{y}}^T \left(\sum_{l} \left(\alpha_l \left(\Pi_{\mathbf{k}\in\beta_l} \mathbf{M}_{\mathbf{R}_{\mathbf{k}}} \mathbf{v}_{\mathbf{x}} \right) \right) \right)$

- *I* indexes over all possible rules
- α , is the confidence of the rule
- β_{1} is an ordered list of all relations in the rule

Learning -- Recurrent formulation

An equivalent but recurrent formulation to allow end-to-end differentiable optimization.

At each step,

- predict attentions over TensorLog operators,
- use hidden states to read from memory,
- apply operators and write to memory.

Inference using logical rules

 $\mathbf{h_t} = update(\mathbf{h_{t-1}}, input)$

- $\mathbf{a_t} = \operatorname{softmax} (W\mathbf{h_t} + b)$
- $\mathbf{b_t} = \operatorname{softmax} \left([\mathbf{h_0}, \dots, \mathbf{h_{t-1}}]^T \mathbf{h_t} \right)$

Experiments

Statistical relational learning

	ISG		Neural LP	
	T=2	T=3	T=2	T=3
UMLS	43.5	43.3	92.0	93.2
Kinship	59.2	59.0	90.2	90.1

WikiMovies with natural language queries.

Knowledge b	ase dire writ stai stai
Questions	Wha Who

Moc

Key-Value Men

Neura

Knowledge base completion

Examp	le	OŤ	lea
100 partiall	V C	ontai	ns(0)

1.00 partially_contains (C, A) \leftarrow contains (B, A) \land contains (B, C) 0.45 partially_contains (C, A) \leftarrow contains (A, B) \land contains (B, C) 0.35 partially_contains (C, A) \leftarrow contains (C, B) \land contains (B, A)
1.00 marriage_location(C,A) \leftarrow nationality(C,B) \land contains(B,A) 0.35 marriage_location(B,A) \leftarrow nationality(B,A) 0.24 marriage_location(C,A) \leftarrow place_lived(C,B) \land contains(B,A)
1.00 film_edited_by(B,A) \leftarrow nominated_for(A,B) 0.20 film_edited_by(C,A) \leftarrow award_nominee(B,A) \land nominated_for(B,C)

• Inductive and transductive settings

	WN18	FB15K	FB15KSelected
TransE	0.01	0.48	0.53
Neural LP	94.49	73.28	27.97
Node+LinkFeat	94.3	87.0	34.7
DistMult	94.2	57.7	40.8
Neural LP	94.5	83.7	36.2

ected_by(Blade Runner,Ridley Scott) tten_by(Blade Runner, Philip K. Dick) rred_actors (Blade Runner, Harrison Ford) rred_actors (Blade Runner, Sean Young)

t year was the movie Blade Runner released? o is the writer of the film Blade Runner?

del	Accuracy
nory Network	93.9
al LP	94.6

arned rules