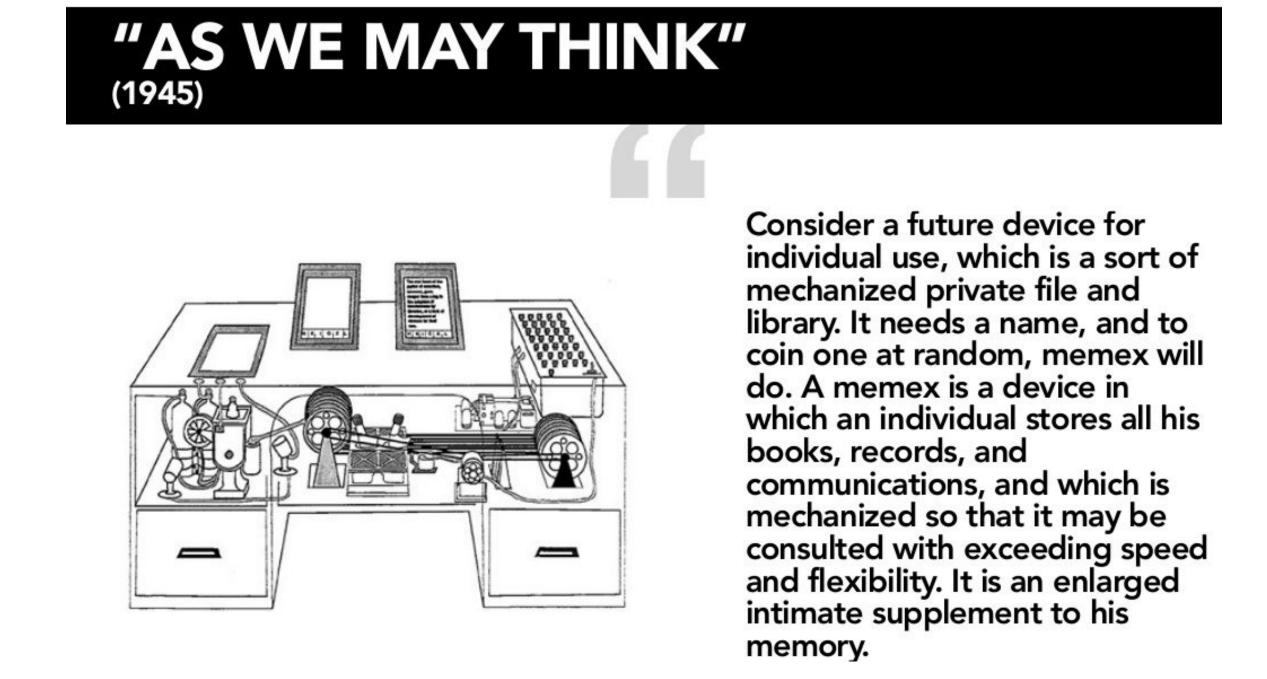
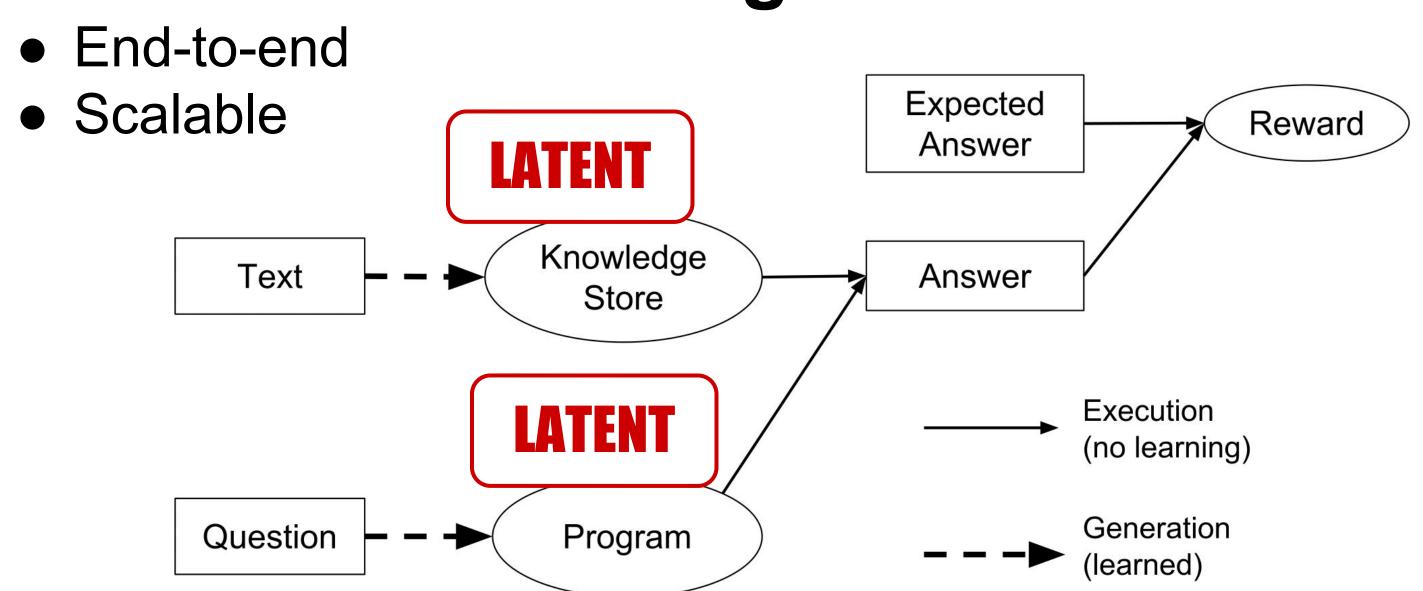
Learning to Organize Knowledge with N-Gram Machines


Fan Yang, Jiazhong Nie, William W. Cohen, Ni Lao Carnegie Mellon University & Google

{fanyang1, wcohen}@cs.cmu.edu, {niejiazhong, nlao}@google.com



How should information be organized?

- Task-oriented, model free, and life-long learning.
- Support fast retrieval and reasoning.

Question answering as a test bed

NGM Framework

Probabilistic Knowledge storage

$$P(\mathbf{\Gamma}|\mathbf{s};\theta_{\text{enc}}) = \Pi_{\Gamma_i \in \mathbf{\Gamma}} P(\Gamma_i|s_i, s_{i-1}; \theta_{\text{enc}})$$

Table 1: Example of probabilistic knowledge storage. Each sentence may be converted to a distribution over multiple tuples, but only the one with the highest probability is shown here.

Sentences	Knowledge tuples		
	Time stamp	Symbols	Probability
Mary went to the kitchen.	1	mary to kitchen	0.9
Mary picked up the milk.	2	mary the milk	0.4
John went to the bedroom.	3	john to bedroom	0.7
Mary journeyed to the garden.	4	mary to garden	0.8

Programs

Table 2: Functions in N-Gram Machines. The knowledge storage on which the programs can execute is Γ , and a knowledge tuple Γ_i is represented as $(i, (\gamma_1, \dots, \gamma_N))$. "FR" means from right.

Name	Inputs	Return
Нор		$\{\gamma_{L+1} \mid \text{ if } (\gamma_1 \dots \gamma_L) == (v_1, \dots, v_L), \forall \Gamma \in \mathbf{\Gamma} \}$
HopFR	$v_1 \dots v_L$	$\{\gamma_{N-L} \mid \text{ if } (\gamma_{N-L+1} \dots \gamma_N) == (v_L, \dots, v_1), \forall \Gamma \in \mathbf{\Gamma} \}$
Argmax	$v_1 \dots v_L$	$\operatorname{argmax}_{i}\{(\gamma_{L+1}, i) \mid \operatorname{if}(\gamma_{1} \dots \gamma_{L}) == (v_{1}, \dots, v_{L}), \forall \Gamma_{i} \in \Gamma\}$
ArgmaxFR	$v_1 \dots v_L$	$\operatorname{argmax}_{i}\{(\gamma_{N-L}, i) \mid \operatorname{if}(\gamma_{N-L+1} \dots \gamma_{N}) == (v_{L}, \dots, v_{1}), \forall \Gamma_{i} \in \Gamma\}$

Reward

- Seq2Seq models
 - s_{i-1} for co-references $P(\Gamma_i|s_i,s_{i-1};\theta_{enc})$ Knowledge encoder
 - Knowledge decoder
- $P(s_i|\Gamma_i,s_{i-1};\theta_{\text{dec}})$
- Programmer
- $P(C|q,oldsymbol{\Gamma}; heta_{ t prog})$ $oldsymbol{\Gamma}$ for code assist

Inference

- Beam search instead of MCMC to avoid huge variances.
- To solve a hard search problem:
- Stabilized auto-encoding (AE)
- Structure tweak (ST)

Optimization

Coordinate descent by REINFORCEs

Generate (learning) Execute (no learning) Expected Answer Messages Answer Variable Executor Function Knowledge Storage Word Code assist: Program can be followed by or O Knowledge Decoder Structure Tweak: Can you change to ? Reconstruction Knowledge Programmer 00000 Encoder Question OOOOO 00000 Reconstruction loss

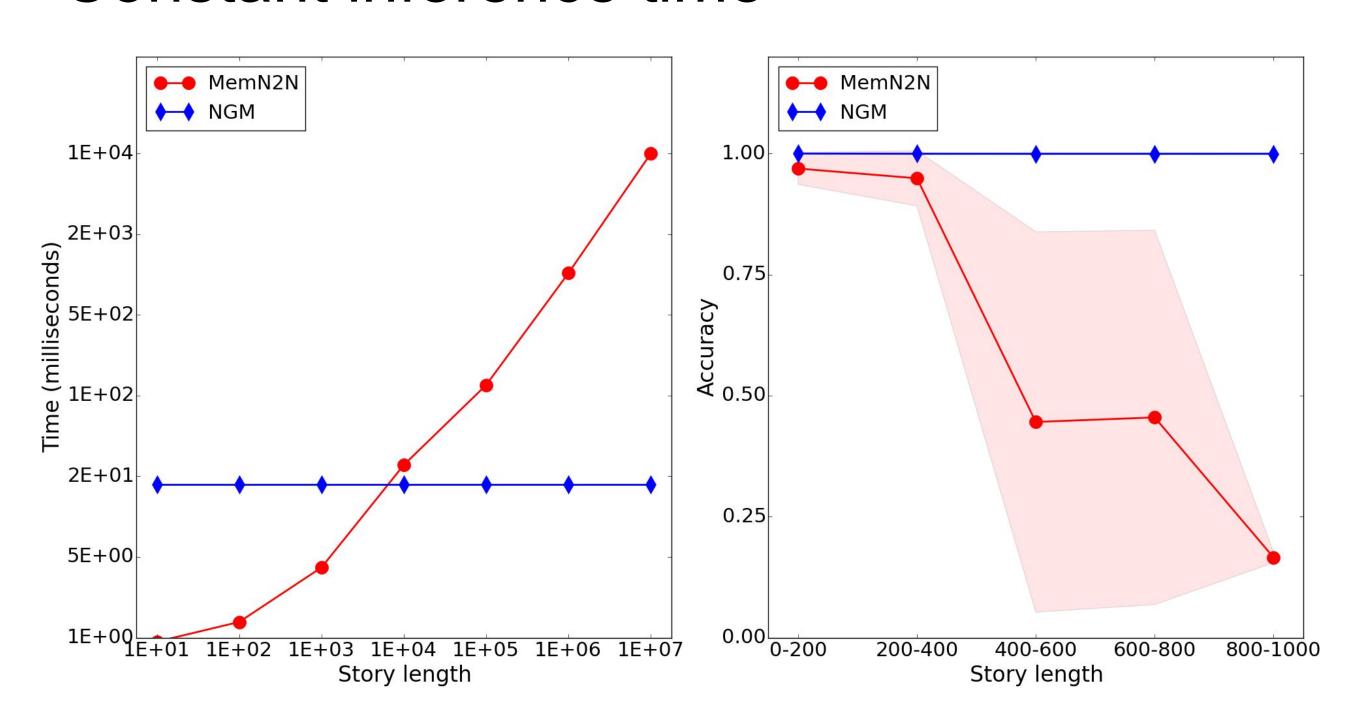
Experiment Results

Extractive bAbl tasks

Table 3: Test accuracy on bAbI tasks with auto-encoding (AE) and structure tweak (ST)

	Task 1	Task 2	Task 11	Task 15	Task 16
MemN2N	1.000	0.830	0.840	1.000	0.440
QA	0.007	0.027	0.000	0.000	0.098
QA + AE	0.709	0.551	1.000	0.246	1.000
QA + AE + ST	1.000	0.853	1.000	1.000	1.000

 Auto-encoding and structural tweaking help to learn good representations.


QA	QA + AE	QA + AE + ST
went went went mary mary mary mary john john john mary mary mary there there	daniel went office mary <u>back</u> garden john <u>back</u> kitchen mary <u>grabbed</u> football sandra got apple	daniel went office mary <u>went</u> garden john <u>went</u> kitchen mary <u>got</u> football sandra got apple
cats cats cats mice mice mice is cat	<pre>cats afraid wolves mice afraid wolves gertrude is cat</pre>	<pre>cat afraid wolves mouse afraid wolves gertrude is cat</pre>

Example solution

Table 6: Task 2 Two Supporting Facts

Story	Knowledge Storage
Sandra journeyed to the hallway. John journeyed to the bathroom. Sandra grabbed the football. Daniel travelled to the bedroom. John got the milk. John dropped the milk.	Sandra journeyed hallway John journeyed bathroom Sandra got football Daniel journeyed bedroom John got milk John got milk
Question	Program
Where is the milk?	ArgmaxFR milk got Argmax V1 journeyed

Constant inference time

