BBM: Bayesian Browsing Model from Petabyte-scale Data

Chao Liu
Microsoft Research
Redmond, WA 98052
chaoliu@ microsoft.com

ABSTRACT

Given a quarter of petabyte click log data, how can we esti-
mate the relevance of each URL for a given query? In this
paper, we propose the Bayesian Browsing Model (BBM), a
new modeling technique with following advantages: (a) it
does ezact inference; (b) it is single-pass and parallelizable;
(c) it is effective.

We present two sets of experiments to test model effec-
tiveness and efficiency. On the first set of over 50 million
search instances of 1.1 million distinct queries, BBM out-
performs the state-of-the-art competitor by 29.2% in log-
likelihood while being 57 times faster. On the second click-
log set, spanning a quarter of petabyte data, we showcase
the scalability of BBM: we implemented it on a commercial
MapReduce cluster, and it took only 3 hours to compute the
relevance for 1.15 billion distinct query-URL pairs.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - retrieval models

General Terms

Algorithms, Experimentation, Performance

Keywords

Bayesian models, click log analysis, web search

INTRODUCTION

Web search has become indispensable from everyday life:
questions ranging from navigating to “live.com” to how to
bleach wine stains are all directed to search engines. While
responding to users’ information needs, search engines also
log down the interaction with users, a typical form of which
is what URLs are presented and which are clicked in each
search result. Such click log constitutes an invaluable source
of user feedbacks, which can be leveraged in many search-
related applications [4], e.g., query recommendation [5, 31],

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD’09, June 28-July 1, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

Fan Guo
Carnegie Mellon University
Pittsburgh, PA 15213
fanguo@cs.cmu.edu

537

Christos Faloutsos
Carnegie Mellon University
Pittsburgh, PA 15213
christos@cs.cmu.edu

learning to rank [1, 18, 22, 26], and personalized search [28],
just to name a few.

A central question in click log analysis is to infer user-
perceived relevance for each query-URL pair. The task could
be as trivial as counting the click through rate, should the
search engine know the snippets of which URLs are exam-
ined by the user in addition to those clicked. As such in-
formation is not available in the log, we need to first under-
stand how users examine search results and make decisions
on clicks. Thanks to previous work in this direction (e.g.,
[19, 20, 8)]), it is well known that a number of factors must be
considered in an accurate interpretation of user clicks, such
as the position-bias of examination and clicks, and depen-
dency between clicks over different documents in the same
search result page. Quite a few statistical models have been
recently developed to leverage user clicks for inferring user-
perceived relevance, some representatives of which are the
cascade model [8], Dependent Click Model [17], and User
Browsing Model [11]. We will review them with details in
Section 2.

In practice, it is common to have tens to hundreds of ter-
abytes log data accumulated at the server side every day.
This data stream nature of click logs imposes two compu-
tational challenges for click modeling. First, the scalability:
a click model must scale comfortably to terabyte-scale or
even petabyte-scale data. Even better, we would expect the
modeling to be highly parallelizable for better scalability.
Second, the capability to be incrementally updated, i.e., in-
cremental learning: for not losing sync with the evolving
world wide web, a click model (and its relevance estimate
thereof) has to be continuously updated. Considering the
ever-growing search volume, we would expect a practical
click model to be single-pass, which minimizes the storage
and I/O cost for revisiting historical data.

The previous models, despite of their different user behav-
ior assumptions, all follow the point-estimation philosophy:
the estimated relevance for each query-URL pair is a sin-
gle number normalized to [0,1], and a larger value indicates
stronger relevance. While this single-number estimate could
suffice for many usages, it nevertheless falls short of capac-
ity for broader applications, for example, it is unspecified
how to estimate the probability that URL wu; is preferred
to u; for the same query while their relevance are r; and
r; respectively. Existing learning-to-rank algorithms derive
pairwise preference relationship either from human ratings
(e.g., [7]) or from certain heuristics ([18, 24]). To the best of
our knowledge, no principled approach has been proposed
to compute a preference probability, which could support

broader applications in both web search and online adver-
tising.

In this paper, we propose the Bayesian Browsing Model
(BBM), which builds upon the state-of-the-art User Brows-
ing Model (UBM) and scales to petabyte-scale data with
easy incremental updates. By virtue of the Bayesian ap-
proach to modeling the document relevance, the preference
probability between multiple documents is well-defined and
can be computed based on document relevance posteriors.
Moreover, we present an exact inference algorithm for BBM
that exploits the particular probabilistic dependency in the
model, and reveals the relevance posterior in closed form
after a single pass over the log data.

In summary, we make the following contributions in this
study:

e We propose BBM, together with an exact inference al-
gorithm that derives the relevance posterior in closed
form, which facilitates single-pass, incremental compu-
tation.

e We compare BBM with a state-of-the-art model in a
real world data set of over 50 million search instances
for 1.1 million distinct queries. BBM is both effective
(29.2% improvement in average log-likelihood) and ef-
ficient (57 times faster).

e We implement BBM on a commercial MapReduce clus-
ter, and it takes only 8 hours to compute relevance for
more than 1.15 billion query-URL pairs by mining a
265 TeraByte click log.

The rest of the paper is organized as follows. Section 2
introduces preliminaries and discusses previous click models.
We elaborate on BBM and relevant algorithms in Section 3.
Performance comparison results are reported in Section 4,
and the petabyte-scale experiment is presented in Section 5.
Section 6 covers related work, and the paper is concluded in
Section 7.

2. PRELIMINARIES

We first introduce notations in this paper. A web user
submits a query ¢ to a search engine, gets back top-M (usu-
ally M = 10) URLs, examines them, and clicks some or none
of them. This whole process is called a search instance, and
any subsequent re-submission or reformulation is regarded as
another instance. Because relevance is defined w.r.t. query-
URL pairs, we hold ¢ fixed in the following discussion unless
noted otherwise. We will use document and URL exchange-
ably in this paper.

Suppose there are n search instances for a given query, de-
noted by I, (1 < k < n), and a total of N distinct URLSs are
shown in the n instances, denoted by u; (1 < 7 < N). For
each search instance [, the document impression is defined
by a function ¢ such that ¢y (i) = j if u; is the document
impressed at the ith position (or rank) in I. A higher rank
for u; corresponds to a smaller 3.

In click models, examination and clicks are treated as
probabilistic events. For a particular search instance (k is
fixed), we use binary random variables F; to denote the ex-
amination event of the document snippet at position ¢ (doc-
uments in bottom positions may not be examined) and C;
for the click event. Therefore, P(E; = 1) is the examination
probability for position ¢ and P(C; = 1) is the corresponding
click probability.

538

The popular examination hypothesis [23] can thus be sum-
marized as follows: for i =1,..., M,

P(C; =1|E; =0) =0,
P(Cl = 1|E¢ = 1) = 7“¢(.L'),

(1)
)
where r4(;), defined formally as the document relevance, is
the conditional probability of click after examination. It
helps to disentangle clickthroughs of documents with vari-
ous ranks as being caused by examination position-bias and
relevance. Click models based on the examination hypothe-
sis share this definition but differ in the derivation of P(E;).

The cascade hypothesis in [8] states that users always start
the examination from the first document. And the exami-
nation is strictly linear to the rank: a document is examined
only if all documents in higher ranks are examined.

P(E, =1)=1,
P(Eiy1 = 1|E; =0) = 0.

®3)
(4)

Under the cascade hypothesis, F;11 is conditionally inde-
pendent of all examine/click events above i once we know
E;, but E;+1 may also depend on the click C;.

The cascade model proposed in [8] puts together previous
two hypotheses and further constrains that

P(Eiy1=1E; =1)=1-C,, (5)

which implies that a user keeps examining the next doc-
ument until reaching the first click, after which the user
abandons the search instance and stops the examination.

The dependent click model (DCM) [17] further generalizes
the cascade model to instances with multiple clicks by in-
troducing a set of query-independent global parameters as
conditional probabilities of examining the next document
after a click, i.e., Eq. 5 is replaced by

P(E¢+1 = 1|Ei = l,Ci = 1) = \i,
P(Eijy1 =1|E; =1,C; =0) =1,

(6)
(7)

where A; (1 < ¢ < M) are position-dependent user behavior
parameters.

The User Browsing Model (UBM) [11] is also based on
the examination hypothesis, but does not follow the cas-
cade hypothesis. Instead, it assumes that the examination
probability E; is determined by the preceding click position
r; = argmax;<;{C; = 1} and the distance from the current
position to the preceding click d; =i — r;:

P(E; = 1Cr:i-1) = Br, 4, (8)

If there is no preceding click, 7; = 0. We denote all possible
(r,d)’s by the set

T={(r,d)0<r<M1<d<M-—r} 9)

User behavior parameters in UBM are {G,4|(r,d) € T},
and the size of this set is M (M + 1)/2, which is an order
of magnitude larger than DCM. The log-likelihood of the
search instance under UBM is
M
log P(Ci:m) = Z(CZ logra, + Cilog Br, .4,

i=1

+(1=C)log (1= ra,Bra))). (10)

We will compute the average log probability of click se-
quences over test search instances to compare model effec-
tiveness. In our on-going work, we find that UBM is slightly

@

/
Figure 1: The graphical model representation of

BBM. Observed click variables are shaded.

better than DCM by less than 5 percent, but at the expense
of a much higher computation cost.

3. BAYESIAN BROWSING MODEL

UBM represents the state-of-the-art of click model design
with a sophisticated user behavior model and better perfor-
mance than DCM. Estimates of the document relevance r4,’s
and global parameter (3, 4’s can be obtained by maximizing
the log-likelihood over all search instances across queries.
However, because of the coupling between rg;’s and 3,4’s
in the last term of Eq. 10, iterative coordinate-ascent al-
gorithm has to be employed which requires multiple passes
of updates for the relevance of all query-URL pairs until
convergence. While still applicable, the iterative algorithm
will nevertheless hamper the model scalability when the in-
put log goes beyond terabytes. In addition, the maximum-
likelihood estimation still leave the problem of computing
preference probabilities for multiple documents unsolved.

We therefore propose BBM, the Bayesian Browsing Model,
which builds upon UBM by modeling document relevance as
hidden random variables and imposing independent priors
on them. This augmentation, although seemingly trivial,
achieves several theoretical and practical advantages over
its non-Bayesian counterpart:

e Scalability: no iteration is needed anymore, and a
single pass suffices for computing global parameters
and inferring document relevance.

e Algorithmic Accuracy: exact posterior for docu-
ment relevance can be derived in closed form, and
empirical results demonstrate the model effectiveness
with the proposed algorithms.

e Enhanced Modeling Capacity: based on posterior
distribution rather than a single point estimate, we can
derive a number of interesting results which include the
preference probability (Eq. 27).

In the remainder of this section, we first go over the for-
mal model specification in Section 3.1, then proceed to the
exact inference algorithm in Section 3.2 and the maximum-
likelihood parameter estimation in Section 3.3. A toy exam-
ple is given in Section 3.4 to illustrate inference procedures.
Finally, we discuss the parallel version of the algorithm in
Section 3.5.

3.1 Model Specification

For a given query with n search instances and N distinct
URLs. Let R = (R1, R2,... Rn) be the corresponding rel-

539

evance variables ranging in [0,1]. While any independent
prior can be applied to R, the #id non-informative uniform
prior is the most straightforward choice, i.e.,

R) = [[p(8:) =][] Ton ()

We will mention the general case for other priors later, and
note that when the priors over different documents are in-
dependent, so are their posteriors and in the BBM family.
Therefore, BBM is consistent.

Figure 1 plots the graphical model of BBM for a partic-
ular search instance. The model consists of three layers of
random variables. The top layer S = (S1,S2,...,Sm) are
nominal relevance variables such that S; = Ry(;). The other
two layers E and C represent examination and click events
respectively. The full model specification that accompanies
Fig. 1 is as follows:

(11)

Hp

P(E, =) = Bo,1, (13)
P(C; =1|E; =0,8;) =0, (14)
P(C; =1|E; =1,8) = Si, (15)
P(E; =1|Cy,...,Ci-1) = Bry.a;, (16)

where 7, d; are defined in the same way as in Eq. 8.

3.2 Document Relevance Inference

For a general Bayesian network with similar structures as
BBM, computation of the posterior over R given the click
data C™ is intractable. Here we provide an exact inference
procedure for BBM, which not only gives the relevance pos-
terior in closed form, but also reveals how to obtain these
posteriors through a single pass of the data. This algorithm
exploits the particular dependency structure of BBM, and is
therefore preferred to the existing off-the-shelf approximate
inference algorithms such as expectation propagation [21]
and generalized belief propagation [30].

First, based on the Bayes theorem, we have

p(R|C'™) x p(R H (C*IR). (17)

Our goal is to first obtain an un-normalized posterior dis-
tribution over R, and then to normalize it later. Since the
prior p(R) is already known, what is needed is P (C*| R),
a quantity computed for each instance I. Again, an un-
normalized version of P (C*|R) suffices.

In order to compute P (Ck‘ R) , we notice, from the graph-
ical model in Fig. 1, that C} is independent of S§ (j < i)
conditioned on C¥ (j < i). With this conditional indepen-
dence property,

P(CF|CY, ..
P(C|CY, ..

Cz 1a)
L CFLLSE)

P(CFIES, S{)P(Ef|CY,...,Cl0)

k

“ (1 — By ar Si)lfc’k. (18)

Because Eq. 18 also holds for ¢ = 1 given r1 = 0 and d; = 1,
we can multiply the terms for the M positions together to
obtain

P(CY|CY, ...,

P(C*|sh) Ci1,8")

.::13

N
Il
-

o
(19)

=

[T (5 dks’“) (1 - ﬁrf,dfsfy*

N
Il
-

Using S,Zc = R¢k(’i)’

P(C*|Ry, 1), -+ Ry (ar))

M k k

ch 1-ct
I1 (ﬁr:f,df Ro;k(i)) (1 - ﬂrgs,ngm(i))

i=1

Eq. 19 translates into

P(C"|R)

where r¥ denotes the preceding click position before position
i in the instance Ij, and df =i — r?.

Plugging Eq. 20 back into Eq. 17 and using the uniform
prior over R, the un-normalized posterior over R is

(20)

pRICT)] ﬁ <ﬂr§,d§R¢k<i>)Cf (1= Bp a Fono) o

k=1i=1
k

n M o ct
< [IT]Recc (1 - ﬁr,{s,ngmi)) :

k=1i=1
This posterior is a product of 2nM linear factors over R, ...,
Ry, and for each R; there are at most |7|+1 = M(M +
1)/2 + 1 distinct linear factors, namely, R; itself and (1 —
Br,aR;) for each possible (r,d) € 7. Therefore, we can reor-
ganize Eq. 21 as

N
p(R|Cln) o HP(RJ|Cln)
j=1

N N .
<[[&r"] (1- ﬁ,«,de)N“"’ (22)
j=1 (r,d)eT
where the exponents are calculated by
n M
N; =33 I[CE = 1) A (6n) =)] (23)
k=11i=1
n M
:ZZ [(CF=0) A (91(i) =) A (rk =) A (df =
o (24)

We note that the posterior as written by Eq. 22 indicates
that the joint posterior over R factorizes over R;’s, so the
posterior of R;’s are independent of each other, and we can
consequently compute the un-normalized posterior (and nor-
malize it) for each R; independently.

Specifically, by letting

’VT(QMz—r+1)+d = ﬁr,d (25)
so that v1 = Bo,1,72 = Bo,2,---,Ym = Bo,m,Ym+1 = Pi1,
C S YM(M41)/2 = ByM—1,1), Bra’s are linearized, and the pos-

terior of R; is represented by

M(M41)/2

I

i=1

p(R;|CH") o RS° (1— 7R, (26)

(21

~—

d)

540

Algorithm 1 : LearnBBM(C, ¢, N)

Input: C={C",...,C"}: click data
¢ ={¢1,...,Pn}: impression data

Output: N = {N;, Nj,.a} for j=1,...,N and (r,d) € T:
all the exponents in the posterior

01: initialize every value in N to 0;

02: for each search instance k =1,...,n

03: initialize the preceding click position r = 0;

04: for each position i =1,..., M

05: set index for current document j = ¢ (4);

06: if CF ==

07: Nj + +;

08: update the preceding click position r = i;

09: else

10: set the distance to the preceding click d =i — r;

11: Njra++;

12: end

13: end

14: end

Complexity: Time O(nM), Space O(NM?).

where eg = N; and EreM_ri1) 4 = Nj,r.a. We denote the

exponent vector (eo,e1,- - ,en(m41)/2) by e, which fully
characterizes the posterior of R;. Normahzmg Eq. 26 can
be done through a univariate numerical integration over
R; € [0,1]. In practice, we find that mid-point interpo-
lation with B = 100 uniformly distributed points is suffi-
cient. Once normalized, both the density function p(R;)
and the cumulative distribution function ®(R;) can be eval-
uated with the desired precision.

The numerical integration approach could be also applied
to compute any posterior expectations at interest such as
posterior mean and variance, which gives the single-number
estimate of the relevance. In addition, by further employing
the independence property between posteriors, we can cal-
culate the preference probability between documents u; and
Uy by

P(u]- - ui) R] > Rz)

[t

/ p3 (Ry)®:(R;)dR;,

0
B

s3n (2 e (22 e
b=1

Finally, we conclude this subsection with Algorithm 1,
which shows how to obtain these exponents with a single
pass through the click log for a given query with n search
instances. As shown by Eq. 26, the posterior of R; is fully
characterized by M (M + 1)/2 + 1 numbers, so Algorithm 1
is essentially a counting procedure, and we will further illus-
trate the algorithm by an example in Section 3.4.

A more flexible choice for each univariate prior p(R;) is
the beta distribution, such that the prior mean and smooth-
ness can be set flexibly by choosing appropriate parameters
in the beta family. Algorithm 1 still applies to this case,
and the only amendment is that we may need to augment
the exponent vector e by a single additional dimension to
accommodate the (1 —7;) term coming from the prior. Sim-

b—0.5
B

%

ilarly, other prior distribution in the parametric polynomial
form could also be imposed.

3.3 Parameter Estimation

To estimate model parameters 3 = {3,.4|(r,d) € T}, we
first compute the likelihood for each search instance Iy in
the training set, assuming independent prior on document
relevance. From Eq. 20, we have

P(CH)

P(C*|S*)P(SF)ds*

sk
M 1 k k
[T [GrasH™ (1= g 50" ast

M ck 1—ck
1T (ﬁrf.c,dzsﬂ) ' <1 - ﬂr}s,dk/?) ’
i=1

Therefore the log-likelihood can be derived and rewritten as

s cli")
S (CH108(8,145./2) + (1 = CH)log(1 = B 1 /2))

k=11i=1

(28)

(Nr.alog(Br.a/2) + Nralog(1 = Br.4/2)),
(r,d)eT

(29)

where the counts N, 4 and]Vr,d are defined in a similar fash-
ion as the exponents in Eqgs. 23 and 24:

Nyg= zn: Safct=naet=na@=a] 0
k=1 1i=1

Noa=Y St =0act=na@=a] 6
k=1 i=1

Maximizing the log-likelihood function in Eq. 29 can be
again decomposed to |7| univariate problem, and for each
(r,d), we have

OL(B) Nra Ny a
= — — 32
OBrda Bra 2—Pra (32)
with the optimized value
~ 2N,
Bra=min{ 1, ——"% (33)
A%d%’Ahd

Note that the counts needed in the parameter estimation can
be integrated in Algorithm 1 by adding “N(j,d) + +” and
“Ny.q + +” to lines 07 and 11 respectively. The additional
space complexity is only O(M?) and they are shared across
all queries. Parameters can be computed before evaluating
the posterior, and there is no iteration between inference
and estimation.

3.4 A Toy Example

Figure 2(a) depicts 3 search instances that involve 4 dis-
tinct URLs and 3 positions, so n =3, M = 3, N = 4. Nodes
shaded with darker color indicate clicks whereas those with
lighter color are not clicked. The set of (3,4 parameters
are shown on the right with pre-defined values. Under this
setting, the posterior for each document is specified by 7
numbers. We now take u4 as an example, and initialize its
exponent vector es = (0,0,0,0,0,0,0) because of the usage

541

Position 1 Position 2 Position 3

e ‘ @ .

Instance 2

(a) Click Data and Parameter Values

0.62

11 |o9s

0 1 2 R

(b) Posterior for R4

Figure 2: A Toy Example of BBM Inference

of the uniform prior. The first dimension is for the exponent
N4 and others for N4,T,d.

Since u4 is not impressed in Instance 1, e4 is not updated
after scanning Instance 1. Then in Instance 2, because u4
is not clicked on position 3 (i = 3) with the preceding click
on position 2 (r; = 2), e4 is updated to (0,0,0,0,0,0,1),
which is equivalent to multiplying the factor (1 — B2,174)
to the existing posterior. Finally, in Instance 3, since w4
is clicked, the first element of es is incremented to 1, and
es = (1,0,0,0,0,0,1), so given the values for parameters (3,
we have

p(R4|C™®) ox Ra(1 — Ry)

with the normalization constant equals 1/6. The normalized
posterior is plotted in Fig. 2(b).

While we use pre-defined values, the model parameters (3
need to be estimated across all queries in practice. Given
the 3 search instances, the update formulae for the counts
for parameter estimation are

AUA - Ahd‘+(17270JL171%
Nydg = Npa+(2,0,0,1,0,1).

3.5 Scaling BBM with MapReduce

A straightforward way of implementing the sequential in-
ference algorithm (Algorithm 1) on an array of machines is
to distributively store and update the exponents. However,
a number of practical issues remain to be solved, e.g., load
balancing, fault tolerance, and data distributions, etc.. In
this subsection, we discuss how to leverage the MapReduce
paradigm to scale BBM to petabyte-scale data.

MapReduce [9] is a programming model and an associated
commodity computer-based infrastructure that provide au-
tomatic and reliable parallelization once a computation task
is expressed as a Map and a Reduce functions. Specifically,
the Map function reads in a logical record, and emits a set of
(intermediate key, value) pairs. The MapReduce infrastruc-
ture then groups together all values with the same interme-
diate key and pass them to the Reduce function. The Reduce
function accepts an intermediate key and a set of values for
that key, and outputs the final results. In this way, a user
of the MapReduce infrastructure only needs to provide the
two functions, and let the infrastructure deal with practi-
cal issues in parallelization. Open-source implementations
of MapReduce infrastructure are readily available, e.g., the
Apache Hadoop.

To compute the relevance for each query-URL pair, we
record all the exponents in a (M (M +1)/2+ 1)-dimentional
vector e in a similar format to Eq. 26. In the context of
BBM, each exponent value can be uniquely identified by the
tuple (q, u, val), where (g, u) forms the query-URL pair and

val = r(2M —r —1)/2 + d (from Eq. 25) is the index of
the exponent. The variables r, M, d are the same as defined
in Section 2. The Map functions reads a search instance,
scans each position, and emits ((g,u),0) if the position is
clicked, and ((q,u),r(2M —r —1)/2+4d) if not click. So here
(¢, u) serves as the intermediate key for MapReduce, and the
index in the exponent is the value emitted by Map function.
Then the Reduce function simply retrieves the exponents
and update the corresponding exponent in the vector. Both
functions are sketched in the following:

Algorithm 2 : Map(I) — Mapping a search instance

I: current search instance.

I.qry: returns the query,

I.phi[i]: gives the URL on the ith position,

I.clk[i]: indicates click on the ith position.

Output: ((g,u),val): intermediate (key, value) pairs
for every position

01: ¢ = I.qry; r = 0;

02: for each positioni=1,..., M

Input:

03: w=1I.phi(i);

04: if I.clk[i] ==

05: r =1

06: val = 0;

08: else

09: d=1—r;

10: val =r(2M —r —1)/2 4+ d;
11: end

12: Emit((g,u), val);

13: end

Algorithm 3 : Reduce((q,u), valList)
Input:

(g,u): the intermediate key
valList: a list of values associated with (g, u)
Output: ((g,u),e): e is the exponent vector for (g, u)
ce=0;
for each val in valList
e[val] + +
end

2:
3:
4:
5: return ((q,u),e)

In the actual implementation on a commercial MapRe-
duce infrastructure, we modify the Map function to accom-
modate the counts for parameter estimation, and use a more
complicated Reduce function that also calculates the poste-
rior mean for each query-URL pair. To get the preference
probability for each (g, u;, u;) tuple, we could design another
Reduce function over ¢, which computes the preference prob-
abilities for all documents associated with the same query
based on the exponent vectors. For incremental updates, we
only need to modify line 1 of the Reduce function so that we
keep the existing values of exponents instead of initializing
them to 0. Experimental results will be covered in Section 5.

4. PERFORMANCE COMPARISON

We report on performance evaluation of BBM in this sec-
tion. We compare BBM with UBM on both effectiveness
(using test data log-likelihood) and efficiency (using train-
ing time). Most of the experimental settings as introduced
below are consistent with our previous work [17].

542

Query Freq | # Queries | # Search Instances
1-9 792,232 3,773,744 (14.8%)
10-31 253,839 4,155,049 (16.3%)
32-99 75,538 3,995,928 (15.7%)
100-316 23,424 3,905,847 (15.4%)
317-999 6,662 3,526,396 (13.9%)
1000-5000 2,764 6,067,317 (23.8%)

Table 1: Summary of the Test Data Set

4.1 Experimental Setup

The data set was sampled from a commercial search en-
gine over 2 months in 2008. Only search instances with at
least one click are kept for evaluation, because discarded in-
stance tend to have noisy clicks on other search elements,
e.g., sponsored ads and query suggestions. We kept at most
10,000 instances for each distinct query even if the query
is highly frequent, because clicks for most frequent queries
are very similar. For each distinct query, we evenly split
its search instances for training and test based on the time
stamp, and queries with at least 3 search instances in the
training set are kept for subsequent evaluation. This left
us 1,154,459 distinct queries and over 51 million search in-
stances in total, which is 10 times larger than the previous
experiment in [17]. A summary over the test data is pro-
vided in Table 1, where the cutoffs on query frequency are
10*, 10", 10°, etc..

To facilitate robust comparison, the data were further di-
vided into 20 batches of approximately the same size. Each
batch consists of 57,723 queries and around 2.5 million search
instances on average, whose corresponding standard devia-
tions are 232 and 0.06 million, respectively.

Both models were implemented in MATLAB 2008a on an
8-core machine with 32GB RAM running 64-bit Windows
Server 2008. We fit two sets of parameters for navigational
queries and informational queries according to [16]. We set
the number of bins B in BBM to 100 to get adequate level
of accuracy. Similarly, all parameter values for UBM ranges
from 0.01 to 1.00, with 0.01 increment. For each query, we
compute document relevance and position relevance based
on both models. Position relevance is computed by treat-
ing each position as a pseudo-document. The position rel-
evance can substitute the document relevance estimates for
documents that appear zero or very few times in the train-
ing set (the threshold is |2log,,(Query Frequency)|) but do
appear in the test set. This essentially smoothes the pre-
dictive model and improves the performance on the test set,
and also reduces the training cost.

4.2 Model Comparison on Log-Likelihood

Log-likelihood (LL) is a common evaluation metric for
model fitness, and it has been previously used to compare
click model effectiveness [17]. For each query within ev-
ery batch, two models were applied on the same training
set to obtain document relevance and parameter estimates.
Then we computed LL for each search instance in the test
set based on Eq. 10, by replacing relevance rq, by posterior
mean (for BBM) or the learned value (for UBM) as well as
inserting corresponding values for g parameters. The arith-
metic mean over all qualified search instances is reported as
the average LL, and a larger value indicates a better model
fit. If the average LL improves from ¢; to ¢2, the improve-

35
~0.8}| &"BBM (Avg = -0.90) [Average Improvement = 29.2%|
-v-UBM (Avg = -1.16)
5 09 WWH 2
8 e A VAN
= :
ER g
7 g
Q
§-|.1 Eas
. 9.]
VvV R e u i Vvvvvvva o
-12 Vv
0 10 15 20 0 10 15 20
Batch Index Batch Index

(a) LL by Batch (b) LL Improvement Ratio

Figure 3: LL Comparison for Each Batch

Query Freq | Avg Ratio(%) | Stdev (%)
3 19 185 1.8
s 10-31 44.0 0.58
3 . 32-99 16.2 0.46
g2 100-316 6.54 0.54
bl ¥ 317-999 3.53 0.68
1000-5000 1.56 0.77

10 102 10*® 10° 10%7

Query Frequency

(a) LL by Frequency

10"

(b) LL Improvement Ratio

Figure 4: LL Comparison for Each Frequency

ment rate is (exp(f2 — 1) — 1) x 100%. It measures how
much more likely the click sequences in the test data are
generated from the more effective click model.

Figure 3 compares the two models in log-likelihood. Specif-
ically, Fig. 3(a) plots the average LL across 20 batches, and
Fig. 3(b) illustrates the corresponding improvement rate for
each batch. BBM consistently outperforms UBM, with an
average improvement of 29.2%.

While Fig. 3 on average LL provides an overall picture,
it is also instructive to investigate the performance for each
query frequency category. Intuitively, it is easier to predict
the clicks for frequent queries than for less frequent ones
because of the larger training data size and the relatively
more uniform click pattern associated with frequent queries.
To testify this intuition and understand the relative perfor-
mance of BBM and UBM, we compute the average LL for
the 6 query frequency categories according to Table 1.

Figure 4(a) presents the comparison of average LL across
different frequencies, whereas Figure 4(b) reports the mean
and standard improvement ratio computed over 20 batches.
BBM consistently outperforms UBM for all 20*6 batch-
frequency combinations. The performance margin is more
dramatic for less frequent queries, because the Bayesian
modeling of document relevance in BBM significantly re-
duces the overall prediction risk. As tail queries constitute a
significant portion of search instances (as shown in Table 1),
we expect BBM would be more useful in practice than UBM.

4.3 Model Comparison on Time

Figure 5 compares the model training time for both BBM
and UBM on each of the 20 batches. BBM is 57 times faster
on average than its competitor. The speedup can be decom-
posed into two parts: (1) the iterative algorithm for learning
UBM takes multiple iterations to converge. This number
ranges from 16 to 27 (median = 24); (2) A single iteration

543

107,

-v-UBM (Avg = 17,920)
- BBM (Avg = 310)
VR gV VIVIV RV
g 10t i
c
o
[$]
[0
»
£
£
= 10°F
T = o I O A= =g = an == SN= N =R 3]
2 L L L I
1%, 5 10 15 20
Batch Index

Figure 5: Comparison of Model Training Time. BBM
is 57 times faster than UBM on average.

of UBM is still 2.5 times as expensive as BBM, because it
has to scan through each query to optimize the relevance for
each query-URL pair of interest (although we have already
reduced the total number with position relevance computa-
tion).

The difference in computational cost would be more dra-
matic for larger-size data because all the counts can still be
held in memory in this experiment and no expensive disk
I/0 is needed to perform multiple passes over the training
set. But when the data becomes larger and the numbers can
no longer be held in memory, the I/O cost of UBM would be
prohibitive. We therefore discuss the parallel-computation
alternative in the next section.

S. PETABYTE-SCALE EXPERIMENTS

In this section, we demonstrate how BBM scales to
petabyte-scale data with a MapReduce infrastructure. Al-
though UBM can also be implemented in a parallel fashion,
through multiple iterations of Map and Reduce, the time and
resource demand is much more expensive than BBM. We
therefore focus on the scalability of BBM in this subsection.

We collected 0.26PB (1PB = 2°° bytes) log data over a
time interval of 8 consecutive time spans of the same length.
Then we created 8 data sets with the kth data set consists
of the first k time spans, respectively. Details of these data
are summarized in Fig. 6(a); specifically, the largest data set
contains 1.16 billion query-URL pairs for 103 million distinct
queries.

We implemented BBM on a commercial MapReduce clus-
ter and fit the model to each of the eight data sets. We
recorded the total computational time, which is the sum of
the CPU time spent on all machines, for each model learn-
ing job. Due to confidentiality, the computational time for
each job was normalized by being divided by the time of
the first job. The normalized computational time w.r.t. the
size of the input log is plotted in Fig. 6(b), which exhibits
the expected linear relationship because BBM only needs a
single pass over the log.

Figure 6(c), on the other hand, demonstrates the power
of parallelism. On the cluster the first job takes 1.4 hours to

3

3
ol
Job Index | Input Size (TB) | # Query (10°) | #Query-URL (10°) 7r 25
1 312 163 169.0 ool g
2 62.1 307 322.9 = % il
3 943 429 4541 2 e |
4 128.1 53.9 575.0 g =
5 161.8 63.8 686.4 2af g’ 1t
6 195.5 75.4 816.6 ol w
7 229.7 86.3 954.8 | 05t
8 265.2 103.0 1,155.7
00 Sb 1 60 1 ‘;":0 260 2“"':0 300 00 56 160 1é0 260 2“")0 300
Click Log Data in Terabytes (TB) Click Log Data in Terabytes (TB)
(a) Data Summary (b) Normalized Computational Load (¢) Actual Elapsed Time
Figure 6: Scaling BBM to Petabyte-scale Data. The largest job of 0.26PB log data takes only 3 hours to finish.

finish, whereas all the rest jobs take no more than 3 hours,
despite of their much larger computation loads (as shown
in Figure 6(b)). The MapReduce system automatically al-
locates more machines for the Map function for a more de-
manding job with larger input size. Consequently, given a
larger output rate from the Map function, a proportionally
larger number of machines would be allocated to the Reduce
function. For this reason as well as the inherent variations
in MapReduce scheduling and load balancing, a larger job
may end up with a comparable or even shorter elapsed time
than a smaller job. However, when all machines in the clus-
ter are exhausted (or busy with other jobs), larger jobs do
take longer elapsed time.

6. DISCUSSION AND RELATED WORK

One of the earliest publications on large scale query log
analysis appeared in 1999 [25], which presented interesting
statistics as well as a simple correlation analysis from the
Alta Vista search engine. Thereafter, search logs, especially
the click-through data, have been utilized for various appli-
cations, e.g., learning to rank [1, 6, 18, 29|, query recom-
mendation [5, 31], search boosting and result reordering [4,
24]. A central task in utilizing search log is to understand
and model user search and browsing behaviors and click de-
cision processes. Joachims and his collaborators pioneered
this direction by presenting a series of studies around some
eye-tracking experiments [19, 20], which inspired a series of
models that interpret user behaviors with increasing capac-
ity, namely, the cascade model [8], ICM and DCM [17], and
UBM [11]. These models were reviewed with details in Sec-
tion 2 because of their close relationship with the proposed
BBM. What distinguishes BBM from the existing models
is the combination of enhanced modeling capacity and the
scalability that meets the requirements of real-world prac-
tice.

Because of the data stream nature of search log, this work
also relates to mining data streams [3, 13]. There have
been many scalable algorithms developed for different min-
ing tasks on data streams, e.g., classification [10], clustering
[15], and frequent pattern mining [14]. In lieu of these stud-
ies, the exponent vector e in BBM is actually the synopsis
that is maintained over the stream of search log. Since this
synopsis fully characterizes the relevance posterior, it can
be utilized by various downstream applications. Note that
although this synopsis tremendously reduces the data size,

544

it exactly describes the relevance posterior with no approx-
imation.

BBM can be utilized for a number of downstream applica-
tions. In the first place, quantities such as mean and stan-
dard deviation can be extracted from the relevance poste-
rior, and can be used as new features to train a better search
ranker, in a much similar way as [1, 2]. In the second place,
the preference probability from BBM (Eq. 27) can substi-
tute or supplement preferences that are heuristically derived
from clicks or human ratings. For example, Joachims and
his colleagues proposed a set of rules like “click > skip above”
to derive preferences from click-throughs within a search
instance [18], and later extended them to across multiple
instances [22]. The derived preferences are taken as con-
strains to train a Ranking SVM [18]. With BBM, the pref-
erence probabilities can be computed outright from the rel-
evance posteriors, and can actually serve as soft constraints
in Ranking SVM, i.e., one URL is preferred to another with
a certain probability. We foresee that the soft preferences
will lead to a cost-sensitive Ranking SVM, which we will
investigate in the future. As a matter fact, the utility of
preference probability is not limited to augmenting pref-
erences derived from click-through data or Ranking SVM;
instead, we expect most pairwise preference-based learning
to rank algorithms (e.g., RankNet [7], RankBoost [12] and
FRank [27]) can be married with BBM preference proba-
bilities with appropriate algorithmic designs. For example,
RankNet tries to learn a ranking function that agrees the
most with known preferences as derived from human rat-
ings. We could replace the human rating preferences with
preference probability, and study how well the preference
probabilities derived from feedbacks of millions of users com-
pare with well-trained judges.

7. CONCLUSION

In this paper, we proposed BBM, the Bayesian Browsing
Model, together with a single-pass exact inference algorithm
that can be parallelized. BBM is both effective and efficient:
it outperforms a state-of-the-art click model by 29.2% in log-
likelihood, while being 57 times faster in a real world click
data set. We further implemented the model on a MapRe-
duce cluster, and the model was able to compute the rel-
evance for 1.15 billion query-URL pairs within 3 hours by
processing 0.26 petabyte click log. There are many topics to
be further explored in the future, among which the usage of

preference probability in downstream applications is in the
particular spotlight.

Acknowledgements

We would like to thank Wenjie Fu for his great help on
preparing this manuscript. Fan Guo and Christos Faloutsos
are supported in part by the National Science Foundation
under Grant No. DBI-0640543. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

8.
(1]

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

REFERENCES

E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In SIGIR 06, pages 19-26, 2006.

E. Agichtein, E. Brill, S. Dumais, and R. Ragno.
Learning user interaction models for predicting web
search result preferences. In SIGIR ’06, pages 3-10,
2006.

B. Babcock, S. Babu, M. Datar, R. Motwani, and

J. Widom. Models and issues in data stream systems.
In PODS 02, pages 1-16, 2002.

R. Baeza-Yates. Applications of web query mining.
Advances in Information Retrieval, pages 7—22, 2005.
R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
International Workshop on Clustering Information
over the Web, 2004.

M. Bilenko and R. W. White. Mining the search trails
of surfing crowds: identifying relevant websites from
user activity. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, pages
51-60, 2008.

C. Burges, T. Shaked, E. Renshaw, A. Lazier,

M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ’05: Proceedings
of the 22nd international conference on Machine
learning, pages 89-96, 2005.

N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In WSDM °08: Proceedings of the first international
conference on Web search and data mining, pages
87-94, 2008.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In OSDI’04:
Proceedings of the 6th conference on Symposium on
Opearting Systems Design € Implementation, 2004.

P. Domingos and G. Hulten. Mining high-speed data
streams. In KDD ’00: Proceedings of the sixth ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 71-80, 2000.

G. E. Dupret and B. Piwowarski. A user browsing
model to predict search engine click data from past
observations. In SIGIR 08, pages 331-338, 2008.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Journal Machine Learning Research, 4:933-969, 2003.
M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy.
Mining data streams: a review. SIGMOD Record,
34(2):18-26, 2005.

545

(14]

(15]

(16]

(17]

(21]

(22]

(23]

(24]

(25]

(26]

27]

C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu.
Mining frequent patterns in data streamsat multiple
time granularities. Next Generation Data Mining,
2003.

S. Guha, A. Meyerson, N. Mishra, and R. Motwani.
Clustering data streams: Theory and practice. [EEE
Transactions on Knowledge and Data Engineering, 15,
2003.

F. Guo, L. Li, and C. Faloutsos. Tailoring click models
to user goals. In WSCD ’09: Proceedings of the
workshop on Web search click data, 2009.

F. Guo, C. Liu, and Y.-M. Wang. Efficient
multiple-click models in web search. In WSDM 09,
2009.

T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02, pages 133-142, 2002.
T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In SIGIR 05, pages 154-161, 2005.
T. Joachims, L. Granka, B. Pan, H. Hembrooke,

F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in web search. ACM Transactions on Information
Systems, 25(2):7, 2007.

T. Minka. Expectation propagation for approximate
bayesian inference. In UAI ’01: Proceedings of the
17th Conference in Uncertainty in Artificial
Intelligence, pages 362-369, 2001.

F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In KDD ’05, pages
239-248, 2005.

M. Richardson, E. Dominowska, and R. Ragno.
Predicting clicks: estimating the click-through rate for
new ads. In WWW ’07: Proceedings of the 16th
international conference on World Wide Web, pages
521-530, 2007.

M. Shokouhil, F. Scholer, and A. Turpin. Investigating
the effectiveness of clickthrough data for document
reordering. In ECIR’08, pages 591-595, 2008.

C. Silverstein, H. Marais, M. Henzinger, and

M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6-12, 1999.

A. Trotman. Learning to rank. Information Retrieval,
8(3):359-381, 2005.

M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y.
Ma. FRank: a ranking method with fidelity loss. In
SIGIR 07, pages 383-390, 2007.

S. Wedig and O. Madani. A large-scale analysis of
query logs for assessing personalization opportunities.
In KDD 06, pages 742-747, 2006.

G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma,
W. Xi, and W. Fan. Optimizing web search using web
click-through data. In CIKM 04, pages 118-126, 2004.
J. S. Yedidia, W. T. Freeman, and Y. Weiss.
Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE
Trans. Inf. Theory, 51(7):2282-2312, 2005.

7. Zhang and O. Nasraoui. Mining search engine
query logs for query recommendation. In WWW’06,
pages 1039-1040, 2006.

