PPDSparse: A Parallel Primal and Dual Sparse Method to Extreme Classification

Ian E.H. Yen1, Xiangru Huang2, Wei Dai1, Pradeep Ravikumar1, Inderjit S. Dhillon2 and Eric Xing1

1Carnegie Mellon University. 2University of Texas at Austin

KDD, 2017
Outline

1. Problem Setting
 - Extreme Classification
 - Related Works

2. Algorithm
 - Separable Loss
 - Algorithm Diagram

3. Theory
 - Analysis of primal and dual sparsity

4. Experimental Results
Outline

1. Problem Setting
 - Extreme Classification
 - Related Works

2. Algorithm
 - Separable Loss
 - Algorithm Diagram

3. Theory
 - Analysis of primal and dual sparsity

4. Experimental Results
Goal: Learn a function $h(x) : \mathbb{R}^D \rightarrow \mathbb{R}^K$ from D input features to K output scores that is consistent with labels $y \in \{0, 1\}^K$.

K is large (e.g. $10^3 \sim 10^6$).

Average number of positive labels (per sample) $k_p = \frac{1}{N} \sum_{i=1}^{N} (\sum_k y_{ik})$.

Multiclass: $k_p = 1$; Multilabel: $k_p \ll K$.

Average number of positive samples (per class) $n_p = \frac{1}{K} \sum_{k=1}^{K} n_{kp} = \frac{1}{K} \sum_{k=1}^{K} (\sum_i y_{ik})$.

$n_p = \frac{N_{kp}}{K} \ll N$.

Ian E.H. Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit S. Dhillon and Eric Xing (shortinst)
Goal: Learn a function \(h(x) : \mathbb{R}^D \rightarrow \mathbb{R}^K \) from \(D \) input features to \(K \) output scores that is consistent with labels \(y \in \{0, 1\}^K \).

\(K \) is large (e.g. \(10^3 \sim 10^6 \)).
Goal: Learn a function $h(x): \mathbb{R}^D \rightarrow \mathbb{R}^K$ from D input features to K output scores that is consistent with labels $y \in \{0, 1\}^K$.

K is large (e.g. $10^3 \sim 10^6$).

Average number of positive labels (per sample)

$$k_p = \frac{1}{N} \sum_{i=1}^{N} \left(\sum_k y_{ik} \right).$$

Multiclass: $k_p = 1$; Multilabel: $k_p \ll K$.

Average number of positive samples (per class)

$$n_p = \frac{1}{K} \sum_{k=1}^{K} n_p^k = \frac{1}{K} \sum_{k=1}^{K} \left(\sum_i y_{ik} \right).$$

$n_p = Nk_p/K \ll N$
We consider **Linear Classifier**:

\[h(x) := W^T x \quad \text{where} \quad W \in \mathbb{R}^{D \times K}. \]
We consider Linear Classifier:

\[h(x) := W^T x \text{ where } W \in \mathbb{R}^{D \times K}. \]

Challenge: When \(K \) is large, training of simple linear model requires \(O(NDK) \) cost.
Outline

1 Problem Setting
 - Extreme Classification
 - Related Works

2 Algorithm
 - Separable Loss
 - Algorithm Diagram

3 Theory
 - Analysis of primal and dual sparsity

4 Experimental Results
Approaches

- **Approach 1** Structural, i.e. Low-rank or Tree-hierarchy Good accuracy when assumption holds. Lower accuracy when assumptions not hold.
Approaches

- **Approach 1** Structural, i.e. Low-rank or Tree-hierarchy
 Good accuracy when assumption holds. Lower accuracy when assumptions not hold.

- **Approach 2** Parallelized one-vs-all
 Good accuracy, slow, parallelizable. Need days on largest dataset with 100 cores.
Approaches

- **Approach 1** Structural, i.e. Low-rank or Tree-hierarchy Good accuracy when assumption holds. Lower accuracy when assumptions not hold.

- **Approach 2** Parallelized one-vs-all Good accuracy, slow, parallelizable. Need days on largest dataset with 100 cores.

- **Approach 3** Primal-Dual Sparse Good accuracy, fast, not parallelizable, memory issue $O(DK)$. Need days on largest dataset.
Approaches

- **Approach 1** *Structural, i.e. Low-rank or Tree-hierarchy* Good accuracy when assumption holds. Lower accuracy when assumptions not hold.

- **Approach 2** *Parallelized one-vs-all* Good accuracy, slow, parallelizable. Need days on largest dataset with 100 cores.

- **Approach 3** *Primal-Dual Sparse* Good accuracy, fast, not parallelizable, memory issue $O(DK)$. Need days on largest dataset.

- **This paper** *Parallel PD-Sparse* Good accuracy, fast, parallelizable. Need only $< 30 \text{ min}$ on largest dataset with 100 cores.
Outline

1. Problem Setting
 - Extreme Classification
 - Related Works

2. Algorithm
 - Separable Loss
 - Algorithm Diagram

3. Theory
 - Analysis of primal and dual sparsity

4. Experimental Results
We consider the *classwise-separable hinge loss*

\[L(z, y) := \sum_{k=1}^{K} \ell(z_k, y_k) = \sum_{k=1}^{K} \max(1 - y_k z_k, 0) \]

Minimizing a separable loss is equivalent to One-versus-all:

\[
\min_{W \in \mathbb{R}^{D \times K}} \sum_{i=1}^{N} \sum_{k=1}^{K} \ell(w_k^T x_i, y_{ik}) = \sum_{k=1}^{K} \left(\sum_{i=1}^{N} \ell(w_k^T x_i, y_{ik}) \right)
\]
We consider the classwise-separable hinge loss

\[
L(z, y) := \sum_{k=1}^{K} \ell(z_k, y_k) = \sum_{k=1}^{K} \max(1 - y_k z_k, 0)
\]

Minimizing a separable loss is equivalent to One-versus-all:

\[
\min_{W \in \mathbb{R}^{D \times K}} \sum_{i=1}^{N} \sum_{k=1}^{K} \ell(w_k^T x_i, y_{ik}) = \sum_{k=1}^{K} \left(\sum_{i=1}^{N} \ell(w_k^T x_i, y_{ik}) \right)
\]

To obtain sparse iterates, we add \(\ell_1 \)-penalty on \(W \) and add bias per class \(w_{0k} \). The dual problem of the \(\ell_1-\ell_2 \)-regularized problem is:

\[
\min_{\alpha_k \in \mathbb{R}^N} G(\alpha_k) := \frac{1}{2} \|w(\alpha_k)\|^2 - \sum_{i=1}^{N} \alpha_{ik}
\]

s.t. \(w(\alpha_k) = \text{prox}_{\lambda}(\hat{X}^T \alpha_k), \)

\(0 \leq \alpha_{ik} \leq 1. \)
Outline

1. Problem Setting
 - Extreme Classification
 - Related Works

2. Algorithm
 - Separable Loss
 - Algorithm Diagram

3. Theory
 - Analysis of primal and dual sparsity

4. Experimental Results
Primal-Dual-Sparse Active-set Method

\[\nabla G(\alpha_k) = Xw_k \]

\[\Delta \alpha_{A_k} = \arg\min_{\Delta \alpha_i = 0, \ i \notin A_k} G(\alpha + \Delta \alpha) \]

\[w_k = \text{prox}_{\lambda \| \cdot \|_1}(X^T(\alpha_k)) \]

- \(O\left(\text{nnz}(w_k) \text{nnz}(x^j) + \text{nnz}(\alpha_k) \text{nnz}(x_i) \right) \) per iteration.
 - **Search** \(\text{nnz}(w_k) \text{nnz}(x^j) \)
 - **Update + Maintain** \(\text{nnz}(\alpha_k) \text{nnz}(x_i) \)

- Apply **Random Sparsification** on (already sparse) \(w_k \) before search.
- Update \(\alpha \) by Coordinate Descent within \(A_k \).
Due to the separable loss, the optimization can be embarrassingly parallelized with one-time communication.

The input y_k and output w_k of each sub-problem are sparse.

Can be implemented in a distributed, shared-memory, or two-level parallelization setting.

Space: $O(nnz(X) + D)$.

Nearly linear speedup even with thousands of cores.
1 Problem Setting
 - Extreme Classification
 - Related Works

2 Algorithm
 - Separable Loss
 - Algorithm Diagram

3 Theory
 - Analysis of primal and dual sparsity

4 Experimental Results
Key Insight: The number of positive samples for each class

\[n_p = \frac{Nk_p}{K} \]

is small. The following results hold if class-wise bias \(w_{k0} \) are added.
Key Insight: The number of positive samples for each class

\[n_p = \frac{NK}{K} \]

is small. The following results hold if class-wise bias \(w_{k0} \) are added.

Step-1: bound \(\|w\|_1 \), and optimal \(\|\alpha^*\|_1 \) in terms of \(n_p \):

\[\|w_k\|_1 \leq \frac{2n^k_p}{\lambda}, \quad \|\alpha^*_k\|_1 \leq 4n^k_p. \]
Theory: Primal and Dual Sparsity

- **Key Insight:** The number of positive samples for each class
 \[n_p = \frac{Nk_p}{K} \]
 is small. The following results hold if class-wise bias \(w_{k0} \) are added.

- **Step-1:** bound \(\| w \|_1 \), and optimal \(\| \alpha^* \|_1 \) in terms of \(n_p \):
 \[\| w_k \|_1 \leq \frac{2n_p^k}{\lambda} , \quad \| \alpha^*_k \|_1 \leq 4n_p^k. \]

- **Step-2:** bound \(\text{nnz}(w) \), and \(\text{nnz}(\alpha) \) in terms of \(\| w \|_1 \) and \(\| \alpha^* \|_1 \):
 \[\text{nnz}(\tilde{w}_k) \leq \frac{\| w_k \|_1^2}{\delta^2} , \quad \text{nnz}(\alpha^*_k) \leq t \leq \frac{4\| \alpha^*_k \|_1^2}{\epsilon} \]
 where \(\tilde{w} \) is Random-Sparsified version of \(w \) with \(\delta \)-approximation error in \(\nabla G(\alpha) \), and \(\epsilon \) is the desired precision of solution.
Multilabel Classification

<table>
<thead>
<tr>
<th>Data</th>
<th>Metrics</th>
<th>FastXML</th>
<th>PfastreXML</th>
<th>SLEEC</th>
<th>PDSparse</th>
<th>DiSMEC</th>
<th>PPDSparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon-670K</td>
<td>T_{train}</td>
<td>5624s</td>
<td>6559s</td>
<td>20904s</td>
<td>MLE</td>
<td>174135s</td>
<td>921.9s</td>
</tr>
<tr>
<td>N_{train}=490449</td>
<td>P@1 (%)</td>
<td>33.12</td>
<td>32.87</td>
<td>35.62</td>
<td>43.00</td>
<td>38.23</td>
<td>38.24</td>
</tr>
<tr>
<td>N_{test}=153025</td>
<td>P@3 (%)</td>
<td>28.98</td>
<td>29.52</td>
<td>31.65</td>
<td>34.93</td>
<td>34.94</td>
<td></td>
</tr>
<tr>
<td>D=135909</td>
<td>P@5 (%)</td>
<td>26.11</td>
<td>26.82</td>
<td>28.85</td>
<td>8.1G</td>
<td>5.3G</td>
<td></td>
</tr>
<tr>
<td>K=670091</td>
<td>model size</td>
<td>4.0G</td>
<td>6.3G</td>
<td>6.6G</td>
<td>148ms</td>
<td>20ms</td>
<td></td>
</tr>
<tr>
<td>T_{test}/N_{test}</td>
<td>1.41ms</td>
<td>1.98ms</td>
<td>6.94ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WikiSHTC-325K</td>
<td>T_{train}</td>
<td>19160s</td>
<td>20070s</td>
<td>39000s</td>
<td>94343s</td>
<td>271407s</td>
<td>353s</td>
</tr>
<tr>
<td>N_{train}=1778351</td>
<td>P@1 (%)</td>
<td>50.01</td>
<td>57.17</td>
<td>58.34</td>
<td>60.70</td>
<td>64.00</td>
<td>64.13</td>
</tr>
<tr>
<td>N_{test}=587084</td>
<td>P@3 (%)</td>
<td>32.83</td>
<td>37.03</td>
<td>36.7</td>
<td>39.62</td>
<td>42.10</td>
<td></td>
</tr>
<tr>
<td>D=1617899</td>
<td>P@5 (%)</td>
<td>24.13</td>
<td>27.19</td>
<td>26.45</td>
<td>29.20</td>
<td>31.40</td>
<td></td>
</tr>
<tr>
<td>K=325056</td>
<td>model size</td>
<td>14G</td>
<td>16G</td>
<td>650M</td>
<td>547M</td>
<td>8.1G</td>
<td>4.9G</td>
</tr>
<tr>
<td>T_{test}/N_{test}</td>
<td>1.02ms</td>
<td>1.47ms</td>
<td>4.85ms</td>
<td>3.89ms</td>
<td>65ms</td>
<td>290ms</td>
<td></td>
</tr>
<tr>
<td>Delicious-200K</td>
<td>T_{train}</td>
<td>8832.46s</td>
<td>8807.51s</td>
<td>4838.7s</td>
<td>5137.4s</td>
<td>38814s</td>
<td>2869s</td>
</tr>
<tr>
<td>N_{train}=196606</td>
<td>P@1 (%)</td>
<td>48.85</td>
<td>26.66</td>
<td>47.78</td>
<td>37.69</td>
<td>44.71</td>
<td>45.05</td>
</tr>
<tr>
<td>N_{test}=100095</td>
<td>P@3 (%)</td>
<td>42.84</td>
<td>23.56</td>
<td>42.05</td>
<td>30.16</td>
<td>38.08</td>
<td>38.34</td>
</tr>
<tr>
<td>K=782585</td>
<td>P@5 (%)</td>
<td>39.83</td>
<td>23.21</td>
<td>39.29</td>
<td>27.01</td>
<td>34.7</td>
<td>34.90</td>
</tr>
<tr>
<td>K=205443</td>
<td>model size</td>
<td>1.3G</td>
<td>20G</td>
<td>2.1G</td>
<td>3.8M</td>
<td>18G</td>
<td>9.4G</td>
</tr>
<tr>
<td>T_{test}/N_{test}</td>
<td>1.28ms</td>
<td>7.40ms</td>
<td>2.685ms</td>
<td>0.432ms</td>
<td>311.4ms</td>
<td>275ms</td>
<td></td>
</tr>
<tr>
<td>AmazonCat-13K</td>
<td>T_{train}</td>
<td>11535s</td>
<td>13985s</td>
<td>119840s</td>
<td>2789s</td>
<td>11828s</td>
<td>122.8s</td>
</tr>
<tr>
<td>N_{train}=1186239</td>
<td>P@1 (%)</td>
<td>94.02</td>
<td>86.06</td>
<td>90.56</td>
<td>87.43</td>
<td>92.72</td>
<td>92.72</td>
</tr>
<tr>
<td>N_{test}=306782</td>
<td>P@3 (%)</td>
<td>79.93</td>
<td>76.24</td>
<td>76.96</td>
<td>70.48</td>
<td>78.11</td>
<td>78.14</td>
</tr>
<tr>
<td>K=13330</td>
<td>P@5 (%)</td>
<td>64.90</td>
<td>63.65</td>
<td>62.63</td>
<td>56.70</td>
<td>63.40</td>
<td>63.41</td>
</tr>
<tr>
<td>model size</td>
<td>9.7G</td>
<td>11G</td>
<td>12G</td>
<td>15M</td>
<td>2.1G</td>
<td>355M</td>
<td></td>
</tr>
<tr>
<td>T_{test}/N_{test}</td>
<td>1.21ms</td>
<td>1.34ms</td>
<td>13.36ms</td>
<td>0.87ms</td>
<td>0.20ms</td>
<td>1.82ms</td>
<td></td>
</tr>
</tbody>
</table>
Multiclass Classification

Table: Comparison of Different Methods

<table>
<thead>
<tr>
<th>Data</th>
<th>Metrics</th>
<th>FastXML</th>
<th>PfastreXML</th>
<th>SLEEC</th>
<th>PDSparse</th>
<th>DiSMEC</th>
<th>PPDSparse</th>
</tr>
</thead>
<tbody>
<tr>
<td>aloi.bin</td>
<td>T_{train}</td>
<td>1900.9s</td>
<td>1901.6s</td>
<td>16193s</td>
<td>139.8s</td>
<td>92.0s</td>
<td>7.05s</td>
</tr>
<tr>
<td></td>
<td>accuracy (%)</td>
<td>95.71</td>
<td>93.43</td>
<td>93.74</td>
<td>96.2</td>
<td>96.28</td>
<td>96.38</td>
</tr>
<tr>
<td></td>
<td>model size</td>
<td>1.3G</td>
<td>1.3G</td>
<td>3.7G</td>
<td>19M</td>
<td>16M</td>
<td>14M</td>
</tr>
<tr>
<td></td>
<td>T_{test}/N_{test}</td>
<td>5.05ms</td>
<td>5.10ms</td>
<td>28.00ms</td>
<td>0.064ms</td>
<td>0.02ms</td>
<td>0.0178ms</td>
</tr>
<tr>
<td>LSHTC1</td>
<td>T_{train}</td>
<td>1398.2s</td>
<td>1422.4s</td>
<td>5919.3s</td>
<td>196.6s</td>
<td>298.8s</td>
<td>45.8s</td>
</tr>
<tr>
<td></td>
<td>accuracy (%)</td>
<td>22.04</td>
<td>23.32</td>
<td>12.2</td>
<td>22.46</td>
<td>22.74</td>
<td>22.70</td>
</tr>
<tr>
<td></td>
<td>model size</td>
<td>937M</td>
<td>1.1G</td>
<td>631M</td>
<td>88M</td>
<td>142M</td>
<td>381M</td>
</tr>
<tr>
<td></td>
<td>T_{test}/N_{test}</td>
<td>5.73ms</td>
<td>8.81ms</td>
<td>14.66ms</td>
<td>0.40ms</td>
<td>3.7ms</td>
<td>6.94ms</td>
</tr>
<tr>
<td>Dmoz</td>
<td>T_{train}</td>
<td>6475.1s</td>
<td>6619.7s</td>
<td>47490s</td>
<td>2518.9s</td>
<td>1972.0s</td>
<td>170.60s</td>
</tr>
<tr>
<td></td>
<td>accuracy (%)</td>
<td>40.76</td>
<td>39.78</td>
<td>33.03</td>
<td>39.91</td>
<td>39.38</td>
<td>39.32</td>
</tr>
<tr>
<td></td>
<td>model size</td>
<td>3.5G</td>
<td>3.8G</td>
<td>1.5G</td>
<td>680M</td>
<td>369M</td>
<td>790M</td>
</tr>
<tr>
<td></td>
<td>T_{test}/N_{test}</td>
<td>3.29ms</td>
<td>3.20ms</td>
<td>40.43ms</td>
<td>1.87ms</td>
<td>4.58ms</td>
<td>6.58ms</td>
</tr>
</tbody>
</table>
Thank you

Xiangru Huang
xrhuang@cs.utexas.edu