The Sample Complexity of Revenue Maximization in the Hierarchy of Deterministic Combinatorial Auctions

Ellen Vitercik
Joint work with Nina Balcan and Tuomas Sandholm

Theory Lunch
27 April 2016
Combinatorial (multi-item) auctions allow bidders to express preferences for bundles of goods.
Real-world examples

- US Government wireless spectrum auctions [FCC]
- Sourcing auctions [Sandholm 2013]
- Airport time slot allocation [Rassenti 1982]
- Building development, e.g. office space in GHC (no money)
- Property sales
Mechanism designer must determine:

– **Allocation function**: Who gets what?
– **Payment function**: What does the auctioneer charge?

Goal: design *strategy-proof* mechanisms

– Easy for the bidders to compute the optimal strategy
– Easy for designer to analyze possible outcomes
Warm-up: single-item auctions

Second-price auction: the classic strategy-proof, single-item auction.

Allocation (N: $5, T: $3) = give carrot to Nina

Payment (N: $5, T: $3) = charge Nina $3
Revenue-maximizing combinatorial auctions

- **Standard assumptions:** bidders’ valuations drawn from distribution D, mechanism designer knows D
 - Allocation and payment rules often depend on D
Revenue-maximizing combinatorial auctions

<table>
<thead>
<tr>
<th>Design Challenges</th>
<th>Feasible Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support of D might be doubly-exponential</td>
<td>Draw samples from D instead</td>
</tr>
<tr>
<td>NP-hard to determine the revenue-maximizing deterministic auction with respect to D [Conitzer and Sandholm 2002]</td>
<td>Fix a rich class of auctions. Can we learn the revenue-maximizing combinatorial auction in that class with respect to D given samples drawn from D?</td>
</tr>
</tbody>
</table>

- **Central problem in Automated Mechanism Design**

No theory that relates the performance of the designed mechanism on the samples to that mechanism’s expected performance on D, until now.
Outline

- Introduction
- Hierarchy of deterministic combinatorial auction classes
- Our contribution: how many samples are needed to learn over the hierarchy of auctions?
- Affine maximizer auctions and Rademacher complexity
- Mixed-bundling auctions and pseudo-dimension
- Summary and future directions
Combinatorial auctions

\(NINA \)

\(\text{carrot} : $1 \)

\(\text{tomato} : $0 \)

\(\text{carrot} : $1 \)

\(\text{tomato} : $1 \)

\(TUOMAS \)

\(\text{carrot} : 50\text{¢} \)

\(\text{tomato} : 50\text{¢} \)

\(\text{carrot} : 50\text{¢} \)

\(\text{tomato} : 50\text{¢} \)

- \(3^2 \) possible outcomes \(o = (o_1, o_2) \)

- For example, \(o = (\{ \text{carrot} \}, \{ \text{tomato} \}) \)
A natural generalization of second price

\[o^* \text{ maximizes } SW(o) \]
\[o^{-i} \text{ maximizes } SW_{-i}(o) \]

- **Social Welfare** \((o) \)
 \[= SW(o) = \sum_{i \in Bidders} v_i(o) \]
- **\(SW_{-i}(o) \)**
 \[= \sum_{j \in Bidders - \{i\}} v_j(o) \]
- **Allocation:** \(o^* \)
- **Payment:** Nina pays \(SW_{-Nina}(o^{-Nina}) - SW_{-Nina}(o^*) \)

The “Vickrey-Clarke-Groves mechanism” (VCG).
VCG in action

<table>
<thead>
<tr>
<th>Nina</th>
<th>Tuomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>🥕: $1</td>
<td>🥕: 50¢</td>
</tr>
<tr>
<td>🍅: $0</td>
<td>🍅: 50¢</td>
</tr>
<tr>
<td>🥕: $1</td>
<td>🥕: 50¢</td>
</tr>
</tbody>
</table>

- $o^* = (\{🥕\}, \{🍅\})$
- $o^{−Nina} = (\emptyset, \{🥕, 🍅\})$
- Nina pays $v_{Tuomas}(\{🥕, 🍅\}) - v_{Tuomas}(\{🍅\}) = 0$

How do we get the bidders to pay more?
Outcome boosting

Nina

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrot</td>
<td>$1</td>
</tr>
<tr>
<td>Tomato</td>
<td>$0</td>
</tr>
<tr>
<td>Carrot</td>
<td>$1</td>
</tr>
</tbody>
</table>

Tuomas

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrot</td>
<td>50¢</td>
</tr>
<tr>
<td>Tomato</td>
<td>50¢</td>
</tr>
<tr>
<td>Carrot</td>
<td>50¢</td>
</tr>
</tbody>
</table>

\[
\text{value}(\emptyset, \{ \text{Carrot, Tomato} \}) = v_{Nina}(\emptyset) + v_{Tuomas}(\{ \text{Carrot, Tomato} \}) = 50¢
\]
Outcome boosting

\[
\begin{align*}
\text{Nina} & : \$1 \\
\text{Tuomas} & : 50\text{¢} \\
\text{o} & : 50\text{¢} \\
\end{align*}
\]

- \text{value}(\emptyset, \{\text{carrot}, \text{tomato}\}) = \nu_{\text{Nina}}(\emptyset) + \nu_{\text{Tuomas}}(\{\text{carrot}, \text{tomato}\}) = 50\text{¢} + 99\text{¢}
- o^* = (\{\text{carrot}\}, \{\text{tomato}\})
- o^{-\text{Nina}} = (\emptyset, \{\text{carrot}, \text{tomato}\})
Outcome boosting

\[\text{value}(\emptyset, \{\text{carrot}, \text{tomato}\}) = v_{Nina}(\emptyset) + v_{Tuomas}(\{\text{carrot}, \text{tomato}\}) = 50\text{¢} + 99\text{¢} \]

\[o^* = (\{\text{carrot}\}, \{\text{tomato}\}) \]

\[o^{-Nina} = (\emptyset, \{\text{carrot}, \text{tomato}\}) \]

Nina pays \[v_{Tuomas}(\{\text{carrot}, \text{tomato}\}) + 99\text{¢} - v_{Tuomas}(\{\text{tomato}\}) = 99\text{¢} \]
Affine maximizer auctions (AMAs)

- Boost outcomes: $\lambda(o)$
- Take bids ν
- Compute outcome:

\[o^* = \underset{o}{\operatorname{argmax}} \{SW(o) + \lambda(o)\} \]

- Compute Bidder i’s payment:

\[SW_{-i}(o^{-i}) + \lambda(o^{-i}) - (SW_{-i}(o^*) + \lambda(o^*)) \]
Affine maximizer auctions (AMAs)

- Boost outcomes: $\lambda(o)$
- Take bids ν
- Compute outcome:
 $$o^* = \text{argmax}_o \left\{ \sum_{j \in \text{Bidders}}^{n} \nu_j(o) + \lambda(o) \right\}$$
- Compute Bidder i’s payment:
 $$\left[\left(\sum_{j \in \text{Bidders} - \{i\}}^{n} \nu_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in \text{Bidders} - \{i\}}^{n} \nu_j(o^*) + \lambda(o^*) \right) \right]$$

Boost outcomes: $\lambda(o)$
- Take bids ν
- Compute outcome:
 $$o^* = \text{argmax}_o \left\{ \sum_{j \in \text{Bidders}}^{n} \nu_j(o) + \lambda(o) \right\}$$
- Compute Bidder i’s payment:
 $$\left[\left(\sum_{j \in \text{Bidders} - \{i\}}^{n} \nu_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in \text{Bidders} - \{i\}}^{n} \nu_j(o^*) + \lambda(o^*) \right) \right]$$
Affine maximizer auctions (AMAs)

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:

$$o^* = \arg \max_o \left\{ \sum_{j \in \text{Bidders}}^n v_j(o) + \lambda(o) \right\}$$

- Compute Bidder i’s payment:

$$\left[\left(\sum_{j \in \text{Bidders} \setminus \{i\}} v_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in \text{Bidders} \setminus \{i\}} v_j(o^*) + \lambda(o^*) \right) \right]$$
Affine maximizer auctions (AMAs)

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids ν
- Compute outcome:
 \[
o^* = \arg\max_o \left\{ \sum_{j\in\text{Bidders}} w_j \nu_j(o) + \lambda(o) \right\}
 \]
- Compute Bidder i's payment:
 \[
 \left[\left(\sum_{j\in\text{Bidders}-\{i\}} \nu_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j\in\text{Bidders}-\{i\}} \nu_j(o^*) + \lambda(o^*) \right) \right]
 \]
Affine maximizer auctions (AMAs)

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:

$$o^* = \arg \max_o \left\{ \sum_{j \in \text{Bidders}} w_j v_j(o) + \lambda(o) \right\}$$

- Compute Bidder i’s payment:

$$\frac{1}{w_i} \left[\left(\sum_{j \in \text{Bidders} - \{i\}} w_j v_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in \text{Bidders} - \{i\}} w_j v_j(o^*) + \lambda(o^*) \right) \right]$$
Hierarchy of parameterized auction classes

Affine maximizer auctions [R79] \(w_i, \lambda(o) \in \mathbb{R} \)

Virtual valuation combinatorial auctions [SL03] \(\lambda(o) = \sum_{i \in \text{Bidders}} \lambda_i(o) \)

\(\lambda \)-auctions [J07] \(\begin{align*} &w_i = 1 \\
&\lambda(o) \in \mathbb{R} \end{align*} \)

Mixed bundling auctions with reserve prices [TS12] \(\begin{align*} &w_i = 1 \\
&\lambda(o) = 0 \text{ except any outcome where a bidder gets all items} \\
&\text{item reserve prices} \end{align*} \)

Mixed bundling auctions [J07] \(\begin{align*} &w_i = 1 \\
&\lambda(o) = 0 \text{ except outcome where a bidder gets all items} \end{align*} \)
Outline

• Introduction
• Hierarchy of deterministic combinatorial auction classes
• Our contribution: how many samples are needed to learn over the hierarchy of auctions?
 • Affine maximizer auctions and Rademacher complexity
 • Mixed-bundling auctions and pseudo-dimension
• Summary and future directions
Our contribution

- Optimize $\lambda(o)$ and w given a sample $S \sim D^N$
 - (Automated Mechanism Design)
- We want:
 - The auction with best revenue over the sample has almost optimal expected revenue
 - Any approximately revenue-maximizing auction over the sample will have approximately optimal expected revenue
- For any auction we output, we want $|S|$ large enough such that:
 $$|\text{empirical revenue} - \text{expected revenue}| < \epsilon$$
- In other words, how many samples $|S| = N$ do we need to ensure that
 $$\left| \frac{1}{N} \sum_{v \in S} \text{rev}_A(v) - \mathbb{E}_{v \sim D}[\text{rev}_A(v)] \right| < \epsilon$$
 for all auctions A in the class?
- (We can only do this with high probability.)
How many samples do we need?

Affine maximizer auctions [R79]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \varepsilon \right]^2 \right) \]

Virtual valuation combinatorial auctions [SL03]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \varepsilon \right]^2 \right) \]

\[\lambda \text{-auctions [J07]} \]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \varepsilon \right]^2 \right) \]

Mixed bundling auctions with reserve prices [TS12]

\[N = \tilde{O} \left((U / \varepsilon)^2 m^3 \right) \]

Mixed bundling auctions [J07]

\[N = \tilde{O} \left((U / \varepsilon)^2 \right) \]

Variables

- \(N \): sample size
- \(n \): number of bidders
- \(m \): number of items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions
How many samples do we need?

Affine maximizer auctions [R79]
\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})} / \epsilon \right]^2 \right) \]

Virtual valuation combinatorial auctions [SL03]
\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})} / \epsilon \right]^2 \right) \]

\(\lambda \)-auctions [J07]
\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})} / \epsilon \right]^2 \right) \]

Variables
- \(N \): sample size
- \(n \): # bidders
- \(m \): # items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions

Mixed bundling auctions with reserve prices [TS12]
\[N = \tilde{O} \left((U/\epsilon)^2 m^3 \right) \]

Mixed bundling auctions [J07]
\[N = \tilde{O} \left((U/\epsilon)^2 \right) \]

Nearly-matching exponential lower bounds.
How many samples do we need?

Affine maximizer auctions [R79]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \epsilon \right]^2 \right) \]

Virtual valuation combinatorial auctions [SL03]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \epsilon \right]^2 \right) \]

λ-auctions [J07]

\[N = O \left(\left[U n^m \sqrt{m} (U + n^{m/2}) / \epsilon \right]^2 \right) \]

Mixed bundling auctions with reserve prices [TS12]

\[N = \tilde{O} \left(\frac{(U/\epsilon)^2 m^3}{\sqrt{m}} \right) \]

Mixed bundling auctions [J07]

\[N = \tilde{O} \left(\frac{(U/\epsilon)^2}{\sqrt{m}} \right) \]

Learning theory tool: Rademacher complexity
How many samples do we need?

Affine maximizer auctions [R79]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})}/\epsilon \right]^2 \right) \]

Virtual valuation combinatorial auctions [SL03]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})}/\epsilon \right]^2 \right) \]

λ-auctions [J07]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})}/\epsilon \right]^2 \right) \]

Mixed bundling auctions with reserve prices [TS12]

\[N = \tilde{O} \left(\frac{U}{\epsilon} m^3 \right) \]

Mixed bundling auctions [J07]

\[N = \tilde{O} \left(\frac{U}{\epsilon} \right) \]

Variables

- \(N \): sample size
- \(n \): # bidders
- \(m \): # items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions

Learning theory tool: Pseudo-dimension
Outline

• Introduction
• Hierarchy of deterministic combinatorial auction classes
• Our contribution: how many samples are needed to learn over the hierarchy of auctions?
• Affine maximizer auctions and Rademacher complexity
• Mixed-bundling auctions and pseudo-dimension
• Summary and future directions
How many samples do we need?

Affine maximizer auctions [R79]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})/\epsilon} \right]^2 \right) \]

Virtual valuation combinatorial auctions [SL03]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})/\epsilon} \right]^2 \right) \]

\(\lambda \)-auctions [J07]

\[N = O \left(\left[Un^m \sqrt{m(U + n^{m/2})/\epsilon} \right]^2 \right) \]

Mixed bundling auctions with reserve prices [TS12]

\[N = \tilde{O} \left((U/\epsilon)^2 m^3 \right) \]

Mixed bundling auctions [J07]

\[N = \tilde{O} \left((U/\epsilon)^2 \right) \]

Variables

- \(N \): sample size
- \(n \): # bidders
- \(m \): # items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions
Key challenge

Our problem...

- Boost outcomes: $\lambda(o)$; Weight bidders: w_i
- Take bids v
- Compute outcome:
 \[
 o^* = \arg\max_o \left\{ \sum_{j \in \text{Bidders}} w_j v_j(o) + \lambda(o) \right\}
 \]
- Compute Bidder i’s payment:
 \[
 \frac{1}{w_i} \left[\left(\sum_{j \in \text{Bidders} - \{i\}} w_j v_j(o^{-i}) + \lambda(o^{-i}) \right) - \left(\sum_{j \in \text{Bidders} - \{i\}} w_j v_j(o^*) + \lambda(o^*) \right) \right]
 \]

Whereas typically in machine learning...
More expressive function classes need more samples to learn

How to measure expressivity?
 – How well do functions from the class fit random noise?

Empirical Rademacher complexity:

\[(x_1, ..., x_N) \sim \{-1, 1\}^N, \quad S = \{v^1, ..., v^N\}\]

\[R_S(\mathcal{A}) = \mathbb{E}_x \left[\sup_{A \in \mathcal{A}} \frac{1}{N} \sum x_i \cdot rev_A(v^i) \right], \text{ where}\]

Rademacher complexity:

\[R_N(\mathcal{A}) = \mathbb{E}_{S \sim D^N}[R_S(\mathcal{A})]\]

With probability at least 1 − δ, for all \(A \in \mathcal{A}\),

\[|\text{empirical revenue – expected revenue}| \leq 2R_N(\mathcal{A}) + U \sqrt{\frac{2 \ln(2/\delta)}{N}}\]

*\(U\) is the maximum revenue achievable over the support of the bidders’ valuation distributions
• More expressive function classes need more samples to learn
• How to measure expressivity?
 – How well do functions from the class fit random noise?

• **Empirical Rademacher complexity:**
 \[(x_1, \ldots, x_N) \sim \{-1, 1\}^N, \quad S = \{v^1, \ldots, v^N\}\]
 \[R_S(\mathcal{A}) = \mathbb{E}_x \left[\sup_{A \in \mathcal{A}} \frac{1}{N} \sum x_i \cdot \text{rev}_A(v^i) \right], \text{ where}\]

• **Rademacher complexity:**
 \[R_N(\mathcal{A}) = \mathbb{E}_{S \sim \mathcal{D}^N}[R_S(\mathcal{A})]\]

<table>
<thead>
<tr>
<th>(\mathcal{A}) = all binary valued functions</th>
<th>(R_N(\mathcal{A}) = \frac{1}{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{A}) = one binary valued function</td>
<td>(R_N(\mathcal{A}) = 0)</td>
</tr>
</tbody>
</table>
Rademacher complexity of AMAs

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let \mathcal{A} be the class of n-bidder, m-item AMA revenue functions. If $N = O\left(\left[Un^m\sqrt{m(U + n^{m/2})}/\epsilon\right]^2\right)$, then with high probability over a sample $S \sim D^N$, $</td>
</tr>
</tbody>
</table>

- **Key idea:** split revenue function into its simpler components
 - Weighted social welfare without any one bidder’s participation (n components)
 - Amount of revenue subtracted out to maintain strategy-proof property
- Then use compositional properties of Rademacher complexity and other tricks, for example:
 \[
 \text{If } F = \{f \mid f = g + h, g \in G, h \in H\}, \text{ then } R_N(F) \leq R_N(G) + R_N(H)
 \]
Outline

• Introduction
• Hierarchy of deterministic combinatorial auction classes
• Our contribution: how many samples are needed to learn over the hierarchy of auctions?
• Affine maximizer auctions and Rademacher complexity
• Mixed-bundling auctions and pseudo-dimension
• Summary and future directions
How many samples do we need?

Affine maximizer auctions [R79]

\[N = O \left(\frac{Un^{m/2} \sqrt{m(U + n^{m/2})}}{\epsilon^2} \right) \]

Virtual valuation combinatorial auctions [SL03]

\[N = O \left(\frac{Un^{m/2} \sqrt{m(U + n^{m/2})}}{\epsilon^2} \right) \]

\(\lambda\)-auctions [J07]

\[N = O \left(\frac{Un^{m/2} \sqrt{m(U + n^{m/2})}}{\epsilon^2} \right) \]

Mixed bundling auctions with reserve prices [TS12]

\[N = \tilde{O} \left(\frac{(U/\epsilon)^2 m^3}{m_3} \right) \]

Mixed bundling auctions [J07]

\[N = \tilde{O} \left(\frac{(U/\epsilon)^2}{m^3} \right) \]

Variables

- \(N \): sample size
- \(n \): # bidders
- \(m \): # items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions
Mixed bundling auctions (MBAs)

• Class of auctions parameterized by a scalar c
• Boost the allocations where one bidder gets all goods by c
• $\text{value}(\emptyset, \{\text{carrot}, \text{tomato}\}) = v_{\text{Nina}}(\emptyset) + v_{\text{Tuomas}}(\{\text{carrot}, \text{tomato}\}) = 50\text{c} + 99\text{c}$
• $\text{value}(\{\text{carrot}, \text{tomato}\}, \emptyset) = v_{\text{Nina}}(\{\text{carrot}, \text{tomato}\}) + v_{\text{Tuomas}}(\emptyset) = 50\text{c} + 99\text{c}$
• How large must the sample S be in order to ensure that for all MBAs, $|\text{empirical revenue} - \text{expected revenue}| < \epsilon$?
Structural properties of MBA revenue functions

Lemma

Fix $v \in S$. Then $rev_v(c)$ is piecewise linear with at most $n + 1$ discontinuities.
VC-dimension

- Complexity measure for binary-valued functions only
- Example: $F = \{\text{single interval on the real line}\}$
- No set of size 3 can be labeled in all 2^3 ways by F

Class of functions F shatters set $S = \{x_1, \ldots, x_N\}$ if for all $b \in \{0, 1\}^N$, there exists $f \in F$ such that $f(x_i) = b_i$

VC-dimension of F is the cardinality of the largest set S that can be shattered by F

How can we extend VC-dim to real-valued functions?
Pseudo-dimension

\[x_1 \ f(x_1) \leq r^{(1)} \ 0 \]
\[x_2 \ f(x_2) \leq r^{(2)} \ 0 \]
\[x_3 \ f(x_3) > r^{(3)} \ 1 \]
\[x_4 \ f(x_4) \leq r^{(4)} \ 0 \]
\[x_5 \ f(x_5) > r^{(5)} \ 1 \]
\[x_6 \ f(x_6) \leq r^{(6)} \ 0 \]
\[x_7 \ f(x_7) > r^{(7)} \ 1 \]
\[x_8 \ f(x_8) > r^{(8)} \ 1 \]
\[x_9 \ f(x_9) \leq r^{(9)} \ 0 \]

- Sample \(S = \{x_1, \ldots, x_N\} \)
- Class of functions \(F \) into \([-U, U]\)
- \(r = (r^{(1)}, \ldots, r^{(N)}) \in \mathbb{R}^N \)
- \(r = (r^{(1)}, \ldots, r^{(N)}) \in \mathbb{R}^N \)
 witnesses the shattering of \(S \) by \(F \)
 if for all \(T \subseteq S \), there exists \(f_T \in F \)
 such that \(f_T(x_i) \leq r^{(i)} \) iff \(x_i \in T \)
- Pseudo-dimension of \(F \) is the cardinality of the largest sample \(S \)
 that can be shattered by \(F \)

\[\text{P-dim}(F) = \text{VC-dim}(\{(x, r) \mapsto 1_{f(x)-r>0} | f \in F\}) \]
How many samples do we need?

- Set of auction revenue functions \mathcal{A} with range in $[0, U]$, distribution D over valuations v.
- For every $\epsilon > 0$, $\delta \in (0, 1)$, if

$$N = O \left(\left(\frac{U}{\epsilon} \right)^2 \left(\text{P–dim}(\mathcal{A}) \cdot \ln \frac{U}{\epsilon} + \ln \frac{1}{\delta} \right) \right),$$

then with probability at least $1 - \delta$ over a sample $S \sim D^N$, $|\text{empirical revenue} - \text{expected revenue}| < \epsilon$

for every $\text{rev}_A \in \mathcal{A}$.

Pseudo-dimension allows us to derive strong sample complexity bounds.
How many samples do we need?

Affine maximizer auctions [R79]
\[N = O \left(\frac{Un^m \sqrt{m(U + n^{m/2})}}{\epsilon} \right)^2 \]

Virtual valuation combinatorial auctions [SL03]
\[N = O \left(\frac{Un^m \sqrt{m(U + n^{m/2})}}{\epsilon} \right)^2 \]

\(\lambda \)-auctions [J07]
\[N = O \left(\frac{Un^m \sqrt{m(U + n^{m/2})}}{\epsilon} \right)^2 \]

Mixed bundling auctions with reserve prices [TS12]
\[N = \tilde{O} \left(\frac{(U/\epsilon)^2 m^3}{\epsilon} \right) \]

Mixed bundling auctions [J07]
\[N = \tilde{O} \left(\frac{(U/\epsilon)^2}{\epsilon} \right) \]

Variables
- \(N \): sample size
- \(n \): # bidders
- \(m \): # items
- \(U \): maximum revenue achievable over the support of the bidders’ valuation distributions
Theorem

Let $\mathcal{A} = \{rev_c\}_{c \geq 0}$ be the class of n-bidder, m-item mixed bundling auction revenue functions. Then $\text{P-dim}(\mathcal{A}) = O(\log n)$.

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\mathcal{A} = {rev_c}_{c \geq 0}$ be the class of n-bidder, m-item mixed bundling auction revenue functions. Then $\text{P-dim}(\mathcal{A}) = O(\log n)$.</td>
</tr>
</tbody>
</table>
2-bidder MBA pseudo-dimension

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let $\mathcal{A} = {\text{rev}c}{c \geq 0}$ be the class of 2-bidder, m-item mixed bundling auction revenue functions. Then $\text{P-dim}(\mathcal{A}) = 2$.</td>
</tr>
</tbody>
</table>

Proof sketch.

- **Fact:** there exists a set of 2 samples that is shattered by \mathcal{A}.

We need to show that no set of 3 samples can be shattered by \mathcal{A}.

- Suppose, for a contradiction, that $S = \{v^1, v^2, v^3\}$ is shatterable.
- Recall $v^1 = (v^1_1, v^1_2)$
- This means:
 - There exists $r = (r^1, r^2, r^3) \in \mathbb{R}^3$ and $2^{|S|} = 8$ MBA parameters $c = \{c_1, ..., c_8\}$ such that $\{\text{rev}_{c_1}, ..., \text{rev}_{c_8}\}$ induce all 8 binary labelings on S with respect to r.

Lemma

Fix $v^i \in S$. Then $rev_{v^i}(c)$ is piecewise linear with one discontinuity, with a slope of 2 followed by a constant function with value $\min\{v^i_1([m]), v^i_2([m])\}$.
Case 1: $r^3 < \min\{v_1^3([m]), v_2^3([m])\}$
Case 1: \(r^3 < \min\{v_1^3([m]), v_2^3([m])\} \)

<table>
<thead>
<tr>
<th>(rev_{v_3}(c)) increasing</th>
<th>(rev_{v_3}(c) = \min{v_1^3([m]), v_2^3([m])})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_3)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
</tr>
</tbody>
</table>
Case 1: $r^3 < \min\{v_1^3([m]), v_2^3([m])\}$

<table>
<thead>
<tr>
<th>$rev_{v_3}(c)$ increasing</th>
<th>$rev_{v_3}(c) = \min{v_1^3([m]), v_2^3([m])}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rev_{v_2}(c)$ increasing</td>
<td>$rev_{v_2}(c) = \min{v_1^2([m]), v_2^2([m])}$</td>
</tr>
</tbody>
</table>

$c_3 \quad c_2$

$c \quad c$
Case 1: \(r^3 < \min\{v_1^3([m]), v_2^3([m])\} \)

<table>
<thead>
<tr>
<th>(rev_{v^3}(c)) increasing</th>
<th>(rev_{v^3}(c) = \min{v_1^3([m]), v_2^3([m])})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(rev_{v^2}(c)) increasing</td>
<td>(rev_{v^2}(c) = \min{v_1^2([m]), v_2^2([m])})</td>
</tr>
<tr>
<td>(rev_{v^1}(c)) increasing</td>
<td>(rev_{v^1}(c) = \min{v_1^1([m]), v_2^1([m])})</td>
</tr>
</tbody>
</table>

\[c_3 \quad c_2 \quad c_1 \]

\[c \]
Case 1: $r^3 < \min\{v_1^3([m]), v_2^3([m])\}$

<table>
<thead>
<tr>
<th>$rev_{v_3}(c)$ increasing</th>
<th>$rev_{v_3}(c) = \min{v_1^3([m]), v_2^3([m])}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rev_{v_2}(c)$ increasing</td>
<td>$rev_{v_2}(c) = \min{v_1^2([m]), v_2^2([m])}$</td>
</tr>
<tr>
<td>$rev_{v_1}(c)$ increasing</td>
<td>$rev_{v_1}(c) = \min{v_1^1([m]), v_2^1([m])}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c_3</th>
<th>c_2</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We need:

<table>
<thead>
<tr>
<th>$rev_{v_3}(c)$ increasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rev_{v_2}(c)$ increasing</td>
</tr>
<tr>
<td>$rev_{v_1}(c)$ increasing</td>
</tr>
</tbody>
</table>

This is impossible, so we reach a contradiction. Therefore, no set of size 3 can be shattered by the class of 2-bidder MBA revenue functions, so the pseudo-dimension is at most 2.
Summary

• Analyzed the sample complexity of learning over a hierarchy of deterministic combinatorial auctions
• Uncovered structural properties of these auctions’ revenue functions along the way
 – Of independent interest beyond sample complexity results