Learning to Prune: Speeding up Repeated Computations
Daniel Alabi, Adam Tauman Kalai, Katrina Ligett, Cameron Musco, Christos Tzamos, and Ellen Vitercik
COLT 2019

Speeding up Repeated Computations

Goal: Solve sequence of similar computational problems, exploiting common structure

Typically, large swaths of search space never optimal

Learn to ignore them!

- Shortest path always in specific region of road network
- Only handful of LP constraints ever bind
- Large portions of DNA never contain patterns of interest

Model

Function \(f: X \rightarrow Y \) maps problem instances \(x \) to solutions \(y \)

Learning algorithm receives sequence \(x_1, \ldots, x_T \in X \)

E.g., each \(x_i \) equals edge weights for a fixed graph

Goal:

Correctly compute \(f \) on most rounds, minimizing runtime

Worst-case algorithm would compute \(f(x_i) \) for each \(x_i \)

Assume access to other functions mapping \(X \rightarrow Y \)

- Faster to compute
- Defined by subsets (prunings) \(S \) of universe \(\mathcal{U} \)
- Universe \(\mathcal{U} \) represents entire search space
- Denote corresponding function \(f_S: X \rightarrow Y \)
- \(f_u = f \)

Example:

\(\mathcal{U} = \) all edges in fixed graph

\(S = \) subset of edges

Assume exists \(S^*(x) \subseteq \mathcal{U} \) where \(f_S(x) = f(x) \) iff \(S^*(x) \subseteq S \)

- "Minimally pruned set"
- *E.g., the shortest path*

Algorithm

1. Initialize pruned set \(S_1 \leftarrow \emptyset \)
2. For each round \(i \in \{1, \ldots, T\} \):
 a. Receive problem instance \(x_i \)
 b. With probability \(1/\sqrt{i} \), **exploit**:
 i. Output \(f(x_i) \)
 ii. Compute minimally pruned set \(S^*(x_i) \)
 iii. Update pruned set: \(S_{i+1} = S_i \cup S^*(x_i) \)
 c. Otherwise (with probability \(1 - 1/\sqrt{i} \)), **exploit**:
 i. Output \(f_S(x_i) \)
 ii. Don’t update pruned set: \(S_{i+1} = S_i \)

Experiments

- **Linear programming**
 - Top line: Simplex
 - Bottom line: Our algorithm
 - 204 variables, 946 constraints
 - Fraction of mistakes: 0.018 over 5000 runs with \(T = 30 \)

- **Shortest path routing**
 - Top line: Dijkstra’s algorithm
 - Bottom line: Our algorithm
 - Fraction of mistakes: 0.068 over 5000 runs with \(T = 30 \)

Guarantees

Recap: At round \(i \), algorithm outputs \(f_S(x_i) \)

\(S_i \) depends on \(x_{1:i} \)

Goal 1: Minimize \(|S_i| \)

Time it takes to compute \(f_S(x_i) \) typically grows with \(|S_i| \)

Theorem:

\[
\mathbb{E}\left[\sum_{i=1}^T |S_i| \right] \leq |S^*| + \frac{|\mathcal{U}| - |S^*|}{\sqrt{T}}
\]

where \(S^* = \bigcup_{i=1}^T S^*(x_i) \)

Proof:

\[
\mathbb{E}[|S_i|] = \frac{1}{\sqrt{T}}|\mathcal{U}| + \left(1 - \frac{1}{\sqrt{T}}\right) \mathbb{E}[|S_i|] \leq \frac{1}{\sqrt{T}} |\mathcal{U}| + \left(1 - \frac{1}{\sqrt{T}}\right) |S^*|
\]

Goal 2: Minimize # of mistakes

Rounds where \(f_S(x_i) \neq f(x_i) \)

Theorem:

\[
\mathbb{E}[\text{# of mistakes}] \leq \frac{|S^*|}{\sqrt{T}}
\]

where \(S^* = \bigcup_{i=1}^T S^*(x_i) \)

\(S^* \) is smallest set \(S \) where \(f_S(x_i) = f(x_i) \) for all \(i \)

Proof sketch:

- For \(e \in S^* \), let \(N_T(e) \) be # of times \(e \notin S_i \) but \(e \in S^*(x_i) \)
- When makes mistake, must be \(e \in S^*(x_i) \) with \(e \notin S_i \)
 - Otherwise, \(S_i \supsetneq S^*(x_i) \), so no mistake
 - This means \(N_T(e) += 1 \)
- Therefore, \(\mathbb{E}[\text{# of mistakes}] \leq \sum_{e \in S^*} \mathbb{E}[N_T(e)] \)
- We prove \(\mathbb{E}[N_T(e)] \leq \sum_{i=1}^T \left(1 - \frac{1}{\sqrt{T}}\right)^i \leq \frac{1}{\sqrt{T}} \)
 - If \(e \notin S_i \), then \(e \notin S_j \) for \(j \leq i \)
 - This means \(\mathbb{E}[\text{# of mistakes}] \leq \frac{|S^*|}{\sqrt{T}} \)