Learning to optimize computational resources: Frugal training with generalization guarantees

Nina Balcan, Tuomas Sandholm, Ellen Vitercik
Carnegie Mellon University

Algorithm configuration

Algorithms often have **tunable parameters**
- Impact resource consumption such as runtime, memory usage, ...
- Hand-tuning is time-consuming and tedious

This paper: theoretical guarantees for algorithm configuration via ML

Learning-based configuration procedure
Input: Set of “typical” problem instances drawn from distribution \(\Gamma \)

 \(\text{E.g., integer programs (IPs) an airline solves day to day} \)
Output: Parameter setting with low expected resource consumption

 \(\text{E.g., low expected runtime, memory usage, ...} \)

Goal: Procedure itself should have low resource consumption

Notation and example

\(\ell(p,j) \): Resources required to solve instance \(j \) using params \(p \in \mathbb{R}^d \)

Example: \(j \) = integer program and \(p \) = CPLEX parameter setting

 \(\ell(p,j) \) = size of branch-and-bound tree CPLEX builds

Prior research

Kleinberg et al. ‘17, ‘19 and Weisz et al., ‘18, ‘19:

 Focus on finite parameter spaces
Can be used on infinite parameter space:

 - Sample \(\Omega \left(\frac{1}{\gamma} \right) \) configurations; run algorithm over finite set

 - Output configuration is in top \(\gamma \)-quantile

Bad case for randomly sampling parameters:

\[\mathbb{E}_{j \sim \Gamma}[\ell(p,j)] \]

These worst-case examples do exist

 \(\text{E.g., in integer programming [Balcan, Dick, Sandholm, V. ‘18]} \)

Our algorithm

\[\text{OPT} = \min_p \mathbb{E}_{j \sim \Gamma}[\ell(p,j)] \]

(Actually compete with nuanced notion of OPT, like prior research

 [Kleinberg et al. ‘17, ‘19; Weisz et al., ‘18, ‘19])

Maintains **upper confidence bound** (UCB) on OPT, initially set to \(\infty \)

On each round \(t \), draws set \(S_t \) from \(\Gamma \)

Computes **partition** of parameters into regions where within each:

 For each instance in \(S_t \), the loss \(\ell \), capped at \(2^t \), is **constant**
Implementation guidance in prior research

 [e.g., Balcan, Dick, Sandholm, V. ‘18]

On each region of partition, if enough instances have loss less than \(2^t \)

 Chooses arbitrary parameter from region and deems it “good”

Once cap \(2^t \) has grown sufficiently large compared to UCB on OPT:

 Algorithm returns set of “good” parameters

Guarantees

Theorem (informal):
1. \(\text{WHP, exists “good” param in output that’s within } 1 + \epsilon \text{ of optimal} \)
2. Algorithm terminates after \(\tilde{O}\left(\ln\left(\sqrt{1 + \epsilon} \cdot \text{OPT}\right)\right) \) rounds
3. On final round, let \(P \) be the size of partition algorithm computes

 Number of “good” parameters is \(\tilde{O}\left(P \cdot \ln\left(\sqrt{1 + \epsilon} \cdot \text{OPT}\right)\right) \)
4. \(|S_t| \) is polynomial in \(2^t \) (linear in OPT), \(\ln P, d \), and \(\frac{1}{\epsilon} \)

In bad case for random sampling, algorithm terminates in \(\tilde{O}(1) \) rounds