
 1

EUKLAS: Supporting Integration of Example Code

ABSTRACT
The integration of code snippets into users’ target code has
not received much attention among researchers. In this pa-
per, we present our new tool, called Euklas, which assists
JavaScript programmers with the integration of code snip-
pets. Euklas analyses the original file from where code was
copied in order to provide much better “quick fixes” for
errors compared with current tools. Euklas also introduces
static, heuristic source code checks for JavaScript, even
though it is an untyped language. Our evaluation comparing
Euklas with the Eclipse Development Environment’s
JavaScript editor shows that Euklas’s user interface is suc-
cessful and that participants using Euklas were able to fix
almost two times more errors and accomplished this in
much less time.

Author Keywords
Code Reuse, Copy-and-Paste, JavaScript, Integrating Code,
Eclipse, Natural Programming.

ACM Classification Keywords
H.5.2 [Information interfaces and presentation]: User Inter-
faces—Interaction styles (e.g., commands, menus, forms,
direct manipulation). D.2.2 [Software Engineering]: Design
Tools and Techniques—User interfaces

INTRODUCTION
Leveraging examples is an established technique in design
[13] and has recently received much attention from the re-
search community [1,3,6,7]. With the rise of search engines
and web repositories of code along with discussion threads,
blogs, and code example websites, people often tailor or
“mash–up” parts of existing systems into new systems [17].
Surveys and research show that looking for examples is
often people’s preferred way to learn to perform a task, or
use APIs [4]. Most of the research on reusing examples has
focused on building improved search and data mining tools
to help with finding the examples, targeted at interaction
designers [13] and (script) programmers [4,7], which allow
them to find code snippets on the web, in APIs [21], and in
other code databases [3].

However, there has not been much research on assisting
users in reusing the examples after they have been found
[5,6,15]. Copy-and-paste has been identified as a common
usage pattern for reusing code (e.g., blocks or methods)
[11,19]. Our aim is to help people with the identification
and integration of additional relevant pieces of code to
make their copied code work.

This paper introduces our new tool, called EUKLAS (Eclipse
Users’ Keystrokes Lessened by Attaching from Samples)1,
which helps users to more successfully employ copy-and-
paste strategies for reuse. Euklas assists users in fixing er-
rors that are caused by copying and pasting pieces of exam-
ple code into a target system (see Figure 1).

JavaScript is one of the most popular scripting languages
for web programming and is used by a broad variety of us-
ers, from end-user developers [14] such as interaction de-
signers [17], to professional programmers. In spite of this
widespread use, JavaScript development tools provide less
support (e.g., no static code checking, limited auto-
completions), compared with other, non-scripting languages
[10]. One reason may be that analyzing JavaScript is diffi-
cult since it has a weak, dynamic typing that makes it chal-
lenging to perform sophisticated static analyses at edit-time.

1 Euklas is German for Euclase, a gemstone. Euklas is pro-
nounced oy-class.

Figure 1: Euklas enhances Eclipse’s JavaScript editor by (1)
highlighting errors in the source code, (2) providing quick
fixes, and (3) explanations, for copy-and-paste errors based on
the code of the used example snippet.

 2

The following example presents a typical use case for the
kind of copy-and-paste reuse of JavaScript code that is sup-
ported by Euklas. Jamie is a JavaScript developer and has
found a snippet showing how to create an enhanced combo-
box that she wants to use in her website. However, she is
struggling with the integration of the combo-box into her
existing codebase. Jamie has to understand the code in more
detail to identify which function calls are really necessary
and which other pieces of code are relevant to make the
code work (e.g. functions, variables, or imports of
JavaScript and CSS files). This is usually a time-consuming
and cumbersome task especially since Jamie’s JavaScript
editor does not provide any help. At this point, Euklas can
help Jamie with the integration process as it analyzes the
target code and inserts error markers and squiggly un-
derlines that highlight errors in the code (see #1 in Figure
1). More importantly, Euklas computes quick fixes2 which
would correct these errors (see #2 in Figure 1).

Euklas makes the following three major contributions: 1)
Providing heuristic edit-time source code checks for
JavaScript, such as checking for uninitialized variables and
undefined functions, which do not require annotations to
the code. 2) Analyzing the example file from where code
was copied to provide more detailed error descriptions and
much better quick fixes for these errors in the target file. 3)
Using Eclipse’s well-established user interface features for
marking and fixing errors in a new way, i.e. by helping
people to reuse code by employing copy-and-paste strate-
gies.

We evaluated Euklas in a user study with 12 people, com-
paring it to Eclipse’s JavaScript editor. The results showed
that the contributions above have been implemented in a
usable and effective manner. Participants using Euklas
spent much less time integrating example code into their
target systems and fixed almost two times as many errors as
the control group did.

RELATED WORK
The reuse of example code consists of two main phases:
locating the example code and integrating it into the target
system. There are several tools that assist users in finding
relevant example code (e.g., in repositories, on the web)
that they may want to reuse [2,3,9,20]. However, more
relevant are tools that support users in integrating code into
their systems.

JDA (JAVASCRIPT DATAFLOW ARCHITECTURE) enables
users that have no programming skills to mash-up web ap-
plications from JavaScript code that was found on the web
[15]. It enables users to do this by writing simple HTML
commands to connect the different JavaScripts in a way
similar to “pipes” in UNIX systems. However, JDA has so
far not been evaluated in a user study.

2 Quick fixes are an Eclipse feature to perform automatic
changes in the code if they are selected.

D.MIX targets web designers that are familiar with HTML
and scripting languages, such as JavaScript. It enables them
to build and share mashups created from pre-existing web
sites. d.mix inspired the design of Euklas as it follows a
copy-and-paste approach that copies richer representations
of the selected data [8]. In that way, elements’ parameters
can be changed after pasting them to d.mix’s editing envi-
ronment. However, the evaluation showed that participants
regarded d.mix as a viable platform for rapid prototyping
but not for a larger deployment, due to several issues (e.g.,
robustness and performance), which Euklas will not suffer
from.

The Looking Glass IDE helps middle school students to
reuse functionality they find in other programs without re-
quiring them to understand how the code works [6]. It
guides students to do this by enabling them to 1) record the
execution of the program they are interested in, to 2) iden-
tify the start and end of the functionality they are interested
in, and to 3) integrate this functionality in their new pro-
gram.

JIGSAW is a plug-in for the Eclipse IDE that uses a copy-
and-paste interaction technique for reusing Java code [5].
Jigsaw inspired the design of Euklas, since it assist devel-
opers with the integration of the reused source code into the
developer’s own source code. It compares the example code
and the target code to suggest which pieces of the example
code would fit best in the target code. The relevant code is
highlighted in Eclipse by using four colors. Conflicting
suggestions have to be resolved manually by using a dialog
box. However, Jigsaw requires pieces of example and target
code that have a similar AST (Abstract Syntax Tree) struc-
ture. Jigsaw was tested in a study with two developers,
which indicated, “… that conflict resolution is not espe-
cially onerous in the cases examined, though usability im-
provements to our tooling were suggested.” [5, p. 224]

EUKLAS
Euklas’s copy-and-paste design is strongly inspired by Ros-
son’s and Carrol’s study on “the reuse of uses in Smalltalk
programming” [19]. They observed reuse strategies where
programmers copied and pasted a piece of code (without
trying to understand it in detail) that they considered to be
promising for the functionality that they intended to reuse.
After pasting it to the target context, they let the environ-
ment provide editing directions of what would be necessary
to make it work. This was often accomplished in several
cycles of fixing and waiting for new editing directions, pro-
vided by the Smalltalk compiler, until all code was fixed.
Euklas’s design supports users in employing this reuse
strategy. 1) Users copy-and-paste a piece of example code
into their target context, and then 2) Euklas marks errors in
the code and provides suggestions to fix them (such as to
copy-and-paste additional pieces of the example code).
These two steps are performed iteratively until all errors
have been fixed.

 3

User Interface
Returning to the example discussed in the introduction, we
explain how Euklas helps Jamie to integrate the code she
found on the web. Jamie discovered that the constructor
(jawBar(id), see Figure 2) is probably the essential piece
of code for the combo-box she is interested in. She uses
Eulkas’s “smart copy” and “smart paste” commands
to copy-and-paste the constructor into her target file.3 Both
commands can be invoked in four ways in Eclipse’s
JavaScript and HTML editors. They are available in the
right-click context menu, in the main menu, in the toolbar,
and as keyboard shortcuts (command + control + C/V,
which are similar to the regular copy-and-paste key bind-
ings).

After Jamie pasted the code, Euklas identifies two errors in
jawBar(id): the two undefined function calls find-
Match(e) and init() (see #1 in Figure 2). They are un-
defined because their function definitions are not available
in the target file because they have not been copied from
the source file. Euklas uses Eclipse’s error highlighting
feature including the squiggle underlines and the error
markers in the margins for indicating these errors in the
source code.

Figure 2: Euklas marks errors in the function jawBar(),
which is the constructor of the enhanced combo-box, after
Jamie pasted it into the target file.

In addition to marking the errors in the code, Euklas also
suggests solutions for fixing them. By clicking on the error
marker that refers to the call of init(), Jamie gets four
options to fix this error, as shown in Figure 3. Again, Euk-
las uses Eclipse’s functionality for showing the quick fix
options. The quick fixes proposed by Euklas (the first two
in the list in Figure 3) use the Euklas icon to distinguish
them from the quick fixes proposed by Eclipse (the last two
in the list). The first quick fix proposed by Euklas, copies
the function jawBar.prototype.init() which is de-
fined in the example file from which Jaime copied the func-

3 In the future we will explore how to replace the regular
copy/paste commands with ours.

tion jawBar(). The second quick fix proposed by Euklas,
is a default fix that creates a new function, called init()
that would have an empty function body. This is sufficient
to remove the syntax error, but it would actually not serve
Jamie’s intention of making the enhanced combo-box work
in her website. We added this default option, as it resembles
the kind of quick fixes that are offered by Eclipse’s Java
editor that many people are probably used to.

Figure 3: Euklas proposes two quick fixes for the undefined
function init(). It uses Eclipse’s quick fix feature which is
well-known by many programmers.

Figure 4: Euklas pasted the function jawbar.proto–
type.init() from the example file into the target file.

Jamie reads the explanation in the beige window (see
Figure 3) that describes how Euklas intends to fix the error
based on the example code. She decides that this is the
proper fix in her situation and selects it. Euklas pastes the
function jawBar.prototype.init() from the example
file into the target file, as shown in Figure 4 (#2). This suc-
cessfully fixes the missing definition of the function
init(). However, the function findMatch(e) is still
undefined and Euklas identified an additional error in the
newly pasted init() function (outside the current view,
but shown by the marker in the scrollbar: #1 in Figure 4).
Jamie continues to fix the remaining errors in the same
manner until the code is fixed and the combo-box is work-
ing.

Implementation
Euklas was implemented on top of Eclipse’s JavaScript
editor as a plug-in to the IDE. We selected Eclipse because
it provides well-known and well-accepted UI features for
finding and fixing errors. However, Euklas’s concepts

 4

could easily be transferred to other development environ-
ments and other languages.

Unlike Eclipse’s Java editor, the JavaScript editor does not
provide as much programming support. In particular, it only
provides error highlighting for syntax errors and some basic
quick fixes, such as “rename in file” and “assign statement
to new local variable” (see Figure 3). Euklas was designed
to help users with programming JavaScript, which also in-
volves partially programming in HTML and CSS.

In general, it is hard to tell which programming constructs
definitely lead to runtime errors in JavaScript. Therefore, it
has been argued that “… there is no clear-cut definition of
what constitutes an ‘error’” in JavaScript [10]. Jensen et al.
also identify nine potential types of errors of which six are
for instance “masked” by dynamic type conversions and
undefined values (in some cases programmers may even
exploit these behaviors). The other three cause runtime er-
rors: 1) Invoking a non-function value (e.g. undefined) as a
function. 2) Reading an undefined variable. 3) Accessing a
property which is null or undefined

Kim et al. [11] have studied copy-and-paste strategies in
object-oriented programming. They identified that related
code snippets (e.g. referenced fields/constants and caller
method and callee method) are usually copied together be-
cause they belong to the same functionality.

We identified the following list of potential errors that are
detected by Euklas in JavaScript and HTML files. Numbers
1-4 are based on the findings of Jensen et al. and Kim et al.
and the rest are based on our own experiences with Java-
Script.

1. Missing parameter definitions in a function’s pa-
rameter list

2. Missing local and global variable definitions

3. Missing definitions of functions called normally

4. Missing function definitions of functions being
passed as parameters of the global function set-
Timeout(Function_Name, Mili_Sec)

5. Missing CSS style sheet imports (e.g. for general
layout definitions)

6. Missing JavaScript file imports

7. Missing HTML elements being accessed by the
global function getElementById
(HTML_Element_ID)

Euklas provides quick fixes for the potential errors 1-4.
Unfortunately, Euklas cannot provide quick fixes for the
potential errors 5-7 because we have not found a suitable
way to make changes in HTML code by using Eclipse’s
HTML editor. So far, we have not found a way to access
the HTML editor’s AST (Abstract Syntax Tree) of the
HTML parts of the edited file.

In the following we will first discuss the algorithms used
for detecting all seven potential errors. Afterwards we will
discuss the computation of the quick fixes for the potential
errors numbers 1-4.

Euklas employs static analyses on the AST to find potential
errors in JavaScript code. The JavaScript AST can either be
retrieved from Eclipse’s JavaScript editor or from its
HTML editor. Euklas’s analysis of the AST is invoked if a
user “smart pastes” a piece of code from an example file to
the target file.4 As JavaScript was designed to maximize
flexibility, it is not strongly typed and has consistency and
development style issues [16,18] making it very difficult to
analyze the code statically.

Euklas’s code analyses are fundamentally different from
those that are used in regular static code analysis tools, such
as FindBugs [1]. Euklas instead employs heuristic analyses,
which has proven to be a successful alternative approach
[12]. There are two reasons for this. First, JavaScript does
not provide static typing of variables making it impossible
to run certain dataflow analyses. Second, we assume that
the code of the used examples is syntactically and semanti-
cally correct. These two reasons keep our analyses simple,
as they relieve us from many checks, such as finding places
that could dereference a null pointer, or places in which
variables of unrelated types are compared for equality. We
consider such analyses as important, but they are not related
to errors that are usually caused by copy-and-paste. Euklas
uses two different algorithms to identify errors 1-4. The
first algorithm checks for undefined variables (# 1,2) and
the second algorithm checks for undefined functions (#
3,4).

Undefined variables are detected by using the following
error pattern: check for each used variable (e.g., in an as-
signment, a while loop, and if-statement), and see if it was
defined locally, as parameter of the function, in any enclos-
ing function or enclosing function’s parameter list, or if it
was defined globally. To be able to do this check, Euklas
keeps track of the defined variables by using a list of global
variables and two stacked lists for the parameters and lo-
cally defined variables. This check is significantly eased by
the fact that JavaScript uses a simple scoping mechanism. It
puts the scopes on a stack and uses the first occurrence of
an identifier x on the stack as its value.

Undefined functions are detected by using the following
error pattern: check for each function call if there is a corre-
sponding function definition. To be able to do this check,
Euklas walks the AST twice. In the first run, it checks all
function definitions and puts them in a list. In the second
run, it checks for each function call to see if it is on the list

4 In the future, we plan to extend Euklas to search for errors
in the entire file. For the current prototype, we focused on
the most novel aspect of Euklas, which is using the copy-
and-paste information to augment the available corrections.

 5

or not. This check would be fairly easy except that Java-
Script has the following constructs. First, functions are
objects in JavaScript, making it possible to have constructs
like this: var f = function (x) { return x }. This
makes it more complicated to detect the function name,
which would be f in this case. Second, JavaScript does not
have explicit constructors, but a new keyword that binds
this to a new object. This allows for instance constructs
like in the function jawBar(id) that is presented in Figure
2. These make if harder to detect that this.init() refers
to a function called jawBar.prototype.init() and not
to a function that is just called init().

Euklas scans all HTML files that are related to the current
JavaScript file to identify the potential errors no. 5-7. Euk-
las knows about the relation between any JavaScript to any
HTML file, because it analyzes the imports of JavaScript
files in all HTML files that are located in Eclipse’s work-
space. Based on this, it maintains a bi-directional list of
related JavaScript and HTML files. Euklas scans the rele-
vant HTML files for missing JavaScript and CSS imports
that have been used in the example HTML file. It also
checks to see if a given HTML_Element_ID that was used
in a call of getElementById (HTML_Element_ID), was
defined in any of the related HTML files. The analyses use
regular expressions because we were not able to use the
HTML editor’s AST representation of the HTML code.
Errors #5 and #6 are marked with a warning marker
instead of an error marker, as these errors usually do not
lead to any runtime problems. For example, a missing im-
port of a CSS style sheet may cause a strange layout of the
website, but does not cause runtime exceptions.

Since the presented analyses are all heuristic, they can gen-
erate false positive and false negative results, i.e., they can
either mark correct code as an error, or miss marking some
existing errors in the code. We consider false negatives to
be slightly worse than false positives, as it can be quite
cumbersome to find errors compared to being annoyed by
error markers that relate to correct code. Therefore we
slightly tweaked the heuristics towards minimizing false
negatives while increasing the potential of false positives.
For example, Euklas reports variables as undefined if they
have not been defined explicitly using the var keyword.
This does usually not lead to an error, as in these cases
browsers interpret the first assignment of a variable as its
definition.

There are some cases in which Euklas produces false posi-
tives/negatives because it does not use dataflow analysis
techniques. It is, for instance, not able to detect errors that
are caused by “hiding” variables. Consider again the exam-
ple in Figure 2: var that = this;
that.findMatch(e);. In this case Euklas is not be able
to detect that the function call (that.findMatch(e);)
could be related to the object this instead of to the object
that. Therefore, it would produce a false positive, as it
does not find the function definition of jaw-

Bar.prototype.findMatch(e) that belongs to that.
Another wrong detected case is related to variables that
have different types in the source and the target file. This
kind of error is particularly difficult to detect with in
JavaScript, since reliable type information is only available
at runtime.

However, based on our experiences we think that these er-
rors are rather uncommon, although more elaborate analy-
ses may be able to detect them correctly in the future. Jen-
sen et al. [10] have recently published some interesting
ideas in this area. They use dataflow analyses and abstract
interpretations for inferring type information in JavaScript
programs.

Euklas does not only find potential errors in the pasted
code, but it does also provide fixes for these errors. Next we
explain how fixes are computed based on the example files
from which the code was copied. Euklas’s “smart copy-
and-paste” commands establish links between example files
and certain regions in the target file. These links are impor-
tant because it would be difficult to compute proper fixes
for particular errors otherwise (e.g. variable names and
functions may be used for different things in the source
documents). Each target file can have multiple regions and
each region has exactly one link to exactly one correspond-
ing region in an example file from which the code was cop-
ied. Euklas maintains the metadata about these connections
in memory. It updates the regions in the target file when the
file is edited to keep the metadata correct. Euklas loads and
saves this data at Eclipse’s startup and shutdown. We cur-
rently keep this data in a separate file, but we will explore
how to save it by using Eclipse’s metadata management.
Eclipse manages, loads, and saves all error markers auto-
matically. Metadata concerning the available quick fixes is
currently only kept in non-persistent memory since it is fast
to re-generate whenever it is needed.

Based on the error markers in the target file, Euklas identi-
fies to which region in the target file they belong to find the
example file that is connected to this region. Euklas needs
to have access to each of the example files, i.e., they have to
be present in Eclipse’s workspace. We decided that this
would be a valid restriction for the first version of the pro-
totype, but we could imagine that the example files could
also be external pieces of code (e.g., code on web, external
JavaScript files) in the future.

The ASTs of the example files are analyzed for potential
solutions to the corresponding errors. For example, if the
error refers to an undefined variable, Euklas analyzes the
source file for a definition of this variable, under the as-
sumption that the code in the source file is syntactically and
semantically correct. If there is a suitable definition, Euklas
creates a quick fix proposal that is added to the error marker
in the target file. The quick fix proposal consists of a de-
scription of the proposed changes (including a preview of
how the target code would look after the change), a refer-
ence to the example file, and a copy of the relevant AST

 6

piece of the example file. In addition to this quick fix,
which is based on the example file, Euklas generates addi-
tional default solutions. For missing variable declarations, it
creates three default solutions: create a new parameter, cre-
ate a new local variable, and create a new global variable.
For missing function declarations Euklas creates one de-
fault solution: create a new function definition.

If the user selects a proposed quick fix, Euklas parses the
AST of the target file to insert the copied AST piece from
the example file. Euklas tries to insert parameters at the
same position in the target as in the source. Global and local
variables are always inserted as first line in the script or the
function declaration, while functions are always inserted
last. This is an acceptable strategy for the prototype, but
should be changed in the future, based on dependencies in
the existing target code.

We had several problems with the implementation of Ec-
lipse’s quick fix mechanism in Euklas. First, it turned out
the extension points for “quickFixAssistProcessors” and
“quickFixProcessors” did not work and we had to use the
“markerResolution” extension point instead. Second, we
wanted to have nicer looking descriptions in the beige ex-
planation window (see Figure 3) which was not possible.
The window’s implementation interprets pseudo HTML in
which only the tags for “bold” and “line breaks” work. In
addition, it is not possible to control the size of the window
which makes the code inside sometimes look odd, espe-
cially if the lines are long. Third, the insertion of comments
in the source of what Euklas has changed (shown in Figure
4) was difficult, as Eclipse’s JavaScript AST does currently
not support the construction of comment nodes. This leads
to two problems. Single lines of code cannot have com-
ments on the same line and sometimes there are arbitrary
empty lines between the comment and the code which can
lead to nested comments if multiple lines are pasted after
each other by Euklas.

EVALUATION
The evaluation of Euklas had the goal of answering the fol-
lowing question: Is the integration of copied and pasted
pieces of source code faster and more correct with Euklas
than with Eclipse’s standard JavaScript editor?

Participants
We feel that Euklas is most appropriate for people who
have some experience with using JavaScript, and we did not
want to have to train people on how to use Eclipse. There-
fore, we recruited participants who had about one year of
experience in using Eclipse (for developing in any lan-
guage), and who had done at least one programming project
in JavaScript (using any development environment). We
recruited 12 participants (10 male, 2 female) from our local
university community. Each of them received a compensa-
tion of $15 for participating. Their ages ranged from 19
years to 37 years (median: 25, s.d 5). The participants had
diverse backgrounds, such as business administration and

software engineering. We screened the participants before
the study to make sure that their skills met our requirements
by requiring them to answer a brief survey with two ques-
tions about JavaScript and one question about Eclipse. Al-
most all participants reported that they program less than
one hour in JavaScript per week. Eight of them said that
Eclipse is their favorite JavaScript editor, four said Note-
pad++, and three others either named VIM, Emacs, and
GUIM (not mutually exclusive).

Apparatus and Materials
The study was conducted in our lab on the university
grounds. We used an iMac (Mac OS 10.5) running a stan-
dard Eclipse installation (3.6) including the WTP (Web
Tools Project) plug-in. The control group used Eclipse’s
JavaScript editor, and each experimental group used one of
two versions of Euklas: “Euklas lite” and “Euklas full”. The
main difference between the two versions was that “Euklas
lite” only analyzed the target file to identify errors and to
compute quick fixes, while “Euklas full” also analyzed the
example file(s). We chose to have these two different ver-
sions to be able to study the following two aspects sepa-
rately. First, we wanted to explore the effects of providing
error highlighting and quick fixes that are similar to
Eclipse’s Java editor. Second, we were interested in the
effects of having more sophisticated analyses and quick
fixes that took the example file(s) into account.

Therefore, Euklas lite identified potential errors and pro-
vided the kind of quick fixes that are available in Eclipse’s
Java editor, such as “create a new variable” and “create a
new function”. The variables were initialized with a default
value representing an empty string5 and the functions had
an empty function body and parameter list. Euklas full had
all the features that Euklas lite had, but added additional
quick fixes that were based on the analysis of the example
file(s). It also used some additional heuristics for detecting
errors in the JavaScript and HTML code, i.e., missing CSS
style sheet and JavaScript imports that could only be de-
tected by taking the source files into account.

We set up Eclipse’s workspace with the relevant target files
(a small website consisting of six JavaScript and six HTML
files) as well as with the example files (six JavaScript and
six HTML files) that were used as tasks of the study. Each
of the examples could be executed in Firefox (version
3.6.8) so participants could experiment with its functional-
ity. All examples were taken from the Codeproject6 website
which offers downloadable JavaScript files, which made the
study more realistic. However, we reduced the complexity
of dealing with the example code by relieving participants
from the burden of calling the relevant JavaScript functions
inside the HTML files, as Euklas does not provide any help

5 We cannot provide better default initializations, as vari-
ables are not typed in JavaScript.
6 http://www.codeproject.com/

 7

with accomplishing this. We also copied some parts from
the example files to the target files to reduce the number of
errors that users had to deal with.

Procedure
The study used a between-subjects design with three condi-
tions: using Eclipse’s JavaScript editor and using Euklas in
the two different versions. The assignment of the partici-
pants to the three groups was done randomly.

Participants in all groups received an oral introduction to
the study and signed the consent form. All participants were
briefly introduced to Eclipse’s JavaScript editor. Members
of the experimental groups received an additional introduc-
tion to Euklas’s extensions to Eclipse’s JavaScript editor,
i.e. the “smart copy” and “smart paste” menus as well as its
error and warning markers, and the quick fixes. We stepped
through a short tutorial with all participants to show them
what kind of errors they could expect and how to work on
the tasks. All task descriptions were located in the code and
marked with “TODO” comments. The instructions ex-
plained which code should to be copied and what the de-
sired results would be after the code was pasted and all er-
rors were fixed. Participants were instructed that they could
use Firefox to view the examples, retrieve additional infor-
mation from the web, and to test their code after they had
integrated the pasted code.

All participants did the tasks in the same order. The tasks
were designed to cover all cases in which Euklas provides
support as well as cases where it provides misleading help
or does not help at all. The difficulty of the tasks increased
steadily. This was achieved by raising the number of prob-
lems, increasing the number of lines of code of the exam-
ples to be pasted, and by making it harder to identify the
problems and to fix them. Participants were allowed to
work on each task for a fixed amount of time, which varied
from 7 to 20 minutes, based on the task’s difficulty.

The researcher who conducted the study measured the time
it took participants to work on each of the tasks and stopped
them if they ran over the maximum time assigned for each
task (see Table 1). He also observed participants while they
were working and took notes about problems and any
comments they made.

Table 1 summarizes the tasks. It shows the number of errors
per task, the types of errors included in the tasks (based on
the types of errors presented in the “Implementation” sec-
tion), the lines of code (LOC) of the example files (HTML
and JavaScript files together), the total number of lines that
had to be copied to solve the tasks, and the maximum time
participants were given to complete each of the tasks. At
the end of the study, participants filled out a questionnaire.
The questions primarily used five-level Likert scales, but
some of them were open answer.

Task # of
Errors

Types of
Errors*

Source
LOC

Copied
LOC

Max. Time
(min.)

1 1 1 112 10 7

2 3 2, 3 112 13 7

3 2 2, 4 122 29 7

4 3 2, 6, 7 103 5 10

5 5 3 218 125 12

6 10 2, 4, 5 1507 996 20

Sum 24 2174 1178 63

Table 1: Summary of the tasks (*types of errors according to
the list in the “Implementation” section)

Results
The analysis of the data shows that participants using Euk-
las full spent on average at least 35% less time7 (see Figure
5) on integrating the example code into the target system
than the control group did. In this calculation, participants
who did not complete a task were given the maximum time
(shown in Table 1), so the time comparisons are quite con-
servative—in reality, people would probably take much
longer. The data also shows that users in the Euklas full
group fixed almost two times as many errors as users in the
control group (see Figure 6).

Figure 5: Average time (in minutes) that participants spent on
each of the tasks (less is better)

Figure 6: Relative number of fixed errors per task (more is
better)

As shown in Table 1, the tasks varied in numbers and types
of errors, and maximum time allotted. We analyzed each
task separately, rather than calculate an overall metric,
which would have required selecting a method to weight
each task’s contribution to the overall metric. We always
used ANOVAs as statistical tests and Tukey post-hoc tests
to reveal differences between the different conditions.
When reporting means and standard deviation, the results

7 For tasks it was designed to be helpful for.

 8

will be listed by condition in the following order: control,
Euklas lite, and Euklas full.

For task 1, only one participant in the control condition
fixed the error, whereas all the participants in both Euklas
conditions fixed the error. Due to the differences and lack
of normality in the data, no statistical tests were performed.
For completion time, there was a significant effect, F(2,9) =
76.68, p < 0.000. Both versions of Euklas were different
from the control condition, but not from each other. The
average completion times were 6:32 minutes (s.d. 0:56),
1:42 (0:29), and 1:22 (0:28).

For task 2, of the number of errors fixed was significant,
F(2,9) = 4.94, p = 0.036 and Euklas full was different from
the control condition. The average numbers of errors fixed
were 1.25 (0.96), 2.25 (0.5), and 2.75 (0.5). For completion
time, there was a significant effect, F(2,9) = 11.4, p =
0.003. Euklas full was different from both Euklas lite and
the control condition. The average completion times were
7:00 (s.d. 0:00), 5:30 (1:44), and 3:12 (0:55).

For task 3, all participants, except one, fixed both errors.
That one participant, in the control condition, fixed one of
the two errors. Due to the lack of normality in the data, a
statistical test was not performed. For completion time,
there was a significant effect, F(2,9) = 5.04, p = 0.034 and
Euklas full was different from the control condition. The
average completion times were 4:22 (2:00), 2:04 (0:42), and
1:38 (0:46). For task 4 and 5 there were no significant ef-
fects for the number of errors fixed and completion time.

For task 6, the number of errors fixed was significant,
F(2,9) = 32.13, p < 0.000. Both versions of Euklas were
different from the control condition, but not from each
other. The average numbers of fixed errors were 2.0 (2.45),
8.75 (0.96), and 10 (0.0). For completion time, none of the
participants in either the control or Euklas lite condition
completed the task in less than the 20 minutes allowed. All
participants in the Euklas full condition completed the task.
The average completion time was 12:48 (2:33). Due to the
lack of normality in the data, a statistical test was not per-
formed.

The analysis of the final questionnaires provides more de-
tails on the differences between the two Euklas versions.
Figure 7 shows participants’ perception of the helpfulness
of the provided quick fixes. Participants agreed that Euklas
full usually provided helpful quick fixes, which is true, as it
does not do this in all cases. One Euklas full user nicely
expressed why he liked the tool: “Intelligent error messages
and debugging makes it infinitely more useful, especially
when it checks against the source of your copy.” Euklas lite
got lower ratings in terms of the helpfulness of its quick
fixes. One of the Euklas lite users suggested the following
improvement, which reflects exactly the improvements in
Euklas full: “Provide [a] pop-up menu which can suggest
to copy blocks of code to resolve errors.”

The questionnaire also asked whether Euklas speeds up the
integration of JavaScript code compared to other editors
(see Figure 8). Participants using Euklas full strongly
agreed with this statement (4.75 out of 5) while participants
using Euklas lite did not share this view (3.75 out of 5).

Another item of the questionnaire explored whether partici-
pants considered it to be easy to learn the usage of error
markers for integrating copied and pasted code (see Figure
9). Again, users of Euklas full agreed to a higher degree
(4.75 out of 5) on this question than users of Euklas lite (4
out of 5).

Figure 7: Average helpfulness of Euklas's quick fixes (based
on a 5-level Lickert scale—5 is the best)

Figure 8: Average perception if Euklas helped to integrate
JavaScript code more quickly (based on a 5-level Lickert
scale—5 is the best)

Figure 9: Average perception if the usage of error markers for
integrating copied and pasted code was easy to learn (based on
a 5-level Lickert scale—5 is the best)

DISCUSSION
We will now discuss each of the tasks in more detail. Task
1 allowed users to familiarize themselves with the system,
but even though participants were faster in the Euklas con-
ditions. Almost the same is true for task 2. It contained one
error that was a missing function definition. The error was
only found by one person in the control condition, and
again users of Euklas full were about two times faster. Task
3 had 2 errors, which were found by all persons except one.
Even if this was the case, Euklas full users were more than
two times faster to completing the task.

Task 4 showed almost no differences in terms of time and
number of fixed errors. This was surprising since Euklas
full users got help to find a missing external JavaScript im-
port. They got help by a warning maker Euklas put into the
HTML file. Nevertheless, many users either ignored the
marker or did not see it in the first place, which explains
why it took them so long to find this error or why they ran
out of time.

 9

Task 5 was designed to prove that Euklas users do not per-
form worse in cases where the system does not help. The
task included a syntax error for which all groups got the
same help from Eclipse’s JavaScript editor, and a missing
function definition that was not detected by either of the
two Euklas versions. The time was about the same for all
groups, and the number of fixed errors between Euklas full
and the control group was also about the same. The much
lower number of fixed errors of the Euklas lite group was
cause by one participant who did not manage to fix any
error.

Task 6 involved the longest and most complex piece of ex-
ample code, and contained the highest number of errors. In
this task, Euklas full played out its advantages. No one in
the control group, and only one person in the Euklas lite
group completed the task, while all Euklas full users were
able to complete it. Users of Euklas full fixed significantly
more errors and needed significantly less time to complete
the task than users in the other groups.

In sum, the results show that the Euklas lite version, which
provided error detection features and standard quick fixes,
already brought many improvements in comparison with
Eclipse’s standard JavaScript editor, which did not offer
such features. This is not very surprising, since we know
that static analyses and highlighting errors helps. Euklas
full, which offered additional analyses and additional quick
fixes based on the file the code was copied from, improved
Euklas lite even more. It especially showed advantages if
the pieces of copied code got longer and/or more complex.
This approach of considering a broader context for the
computation of potential quick fixes has implications for
many other programming languages, such as Java. Similar
checks could increase programmers’ performance in the
same way it did in our case for JavaScript.

Using Eclipse’s marker feature for highlighting and fixing
errors seems to be an appropriate UI choice as participants
had a very positive attitude towards this approach and con-
sidered it to be easy to learn. The most important aspect
about using this feature is that participants knew what to
expect from the provided quick fixes. They knew that these
were usually right in Euklas full, but that they could some-
times also be wrong and not helpful. Users were generally
able to distinguish between these cases and some manually
checked if a proposed quick fix was appropriate or not be-
fore they used it.

There were a total of 24 errors that occurred after partici-
pants pasted the code from the source files into the target
files. Euklas full provided 20 helpful suggestions for fixing
these errors, plus 33 generic suggestions (e.g. variable ini-
tialized to empty string, function with an empty body) that
did not fix the errors. Eclipse added in most cases two addi-
tional suggestions per error that were not helpful at all. Par-
ticipants sometimes picked one of Euklas’s unhelpful fixes
that created a new function with an empty body (e.g., for
one missing function in task 5). They knew that this was not

sufficient for fixing the error and always looked at the ex-
ample code to manually find the right function to fix the
error. In cases where Euklas did not show an error at all
(e.g., for one missing function in task 5), participants did
not perform worse than the participants in the control
group.

The evaluation has several limitations. First we did the
evaluation with a rather low number of 4 participants in
each of the three conditions. Second, participants used the
provided tools only for an hour, making it hard for them to
provide a reliable feedback. Third, the tasks may not have
been representative realistic tasks8. The pieces of code were
real-world examples that were taken from the web. How-
ever, we had to reduce the complexity of dealing with these
examples to limit the amount of time spent on completing
each of the tasks. Fourth, we did not give participants a
very long time to make themselves familiar with the target
website or with each of the example snippets as this would
have taken too long. This might have biased them to just
follow the suggestions without carefully considering what
the code was doing.

CONCLUSION AND FUTURE WORK
In this paper we presented our new Eclipse plug-in, Euklas,
which helps JavaScript programmers with the integration of
example code into their own code. This process often in-
volves copy-and-paste strategies to integrate the functional-
ity in which programmers are interested into their own pro-
grams. Euklas supports such strategies by detecting poten-
tial errors in the target code and by providing appropriate
fixes for these errors, based on the example code. Our
evaluation showed that Euklas users were able to fix a
much higher number of copy-and-paste errors in much less
time than users who used Eclipse’s JavaScript editor. One
participant summarized his experiences with Euklas in this
way: “Copy and pasting code is frowned upon and discour-
aged within engineering teams. It is better to reuse the code,
but copy and pasting does happen and this tool would be
useful in those cases.”

Euklas has the several advantages in comparison to other
JavaScript editors. It is one of the first JavaScript editors to
offer error detection mechanisms that are similar to those
offered for other languages, such as Java or C++. It uses
heuristics to analyze the code and detects, for example, un-
initialized variables and undefined functions. Its major con-
tribution is analyzing the file from where code was copied
to provide more detailed error descriptions and much better
quick fixes for these errors. These analyses help program-
mers to employ copy-and-paste strategies for integrating
example code into their systems. We believe that similar
assists could increase programmers’ performance in the
same way for many other programming languages.

8 Even if 83% of the participants agreed that the tasks were
realistic ‘real-world’ tasks.

 10

A major design advantage of Euklas is that it leverages
well-known UI design concepts with which Eclipse users
are familiar. It uses Eclipse’s marker and quick fix mecha-
nisms for highlighting and fixing errors in the code. Using
these mechanisms keeps programmers focused on their
code, does not require them to learn new concepts, and rein-
forces that the proposed quick fixes are not always the solu-
tion they are looking for.

In the future, we will implement some additional features.
Euklas should provide all the standard checks that Eclipse’s
Java editor provides, such as fixing misspelled variable
names, and fixing the same error in multiple places. Most of
these features must employ heuristics, as JavaScript has no
type information prior to runtime. We have not imple-
mented these features so far as the work’s focus has been
on proving that the concept of providing quick fixes for
copy-and-paste errors is useful. An interesting idea for pro-
viding improved error detections would be to analyze the
context of a variable to try to determine its runtime type,
which would decrease the number of false positives and
negatives. We will also put more effort in making the
analysis of related files (e.g. remote JavaScript files and
libraries) more elaborate as this will increase the precision
of the error analysis and the proposed quick fixes.

Euklas points to a future where programming support tools
help developers more by taking into account all of the
available contextual information, and the provenance of
resources used. The success of Euklas shows that this ap-
proach is feasible and can be successful, and developers can
make effective use of recommendations, even when they
are heuristic.

REFERENCES
1. Ayewah, N., Hovemeyer, D., Morgenthaler, J.D., Penix,

J. and Pugh, W. Using Static Analysis to Find Bugs.
IEEE Software, 25 (5). 22-29.

2. Bajracharya, S., Ossher, J. and Lopes, C., Sourcerer: An
internet-scale software repository. in ICSE SUITE
Workshop '09, (Vancouver, Canada, 2009), IEEE, 1-4.

3. Brandt, J., Dontcheva, M., Weskamp, M. and Klemmer,
S.R., Example-centric programming: integrating web
search into the development environment. in CHI '10,
(Atlanta, GA, 2010), 513-522.

4. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M. and
Klemmer, S.R., Two studies of opportunistic program-
ming: interleaving web foraging, learning, and writing
code. in CHI '09, (Boston, MA, 2009), 1589-1598.

5. Cottrell, R., Walker, R.J. and Denzinger, J., Semi-
automating small-scale source code reuse via structural
correspondence. in FSE-16, (Atlanta, GA, 2008), 214-
225.

6. Gross, P.A., Herstand, M.S., Hodges, J.W. and Kelleher,
C.L., A code reuse interface for non-programmer middle

school students. in IUI '10, (Hong Kong, China, 2010),
219-228.

7. Hartmann, B., MacDougall, D., Brandt, J. and Klemmer,
S.R., What would other programmers do: suggesting so-
lutions to error messages. in CHI '10, (Atlanta, GA,
2010), 1019-1028.

8. Hartmann, B., Wu, L., Collins, K. and Klemmer, S.R.,
Programming by a sample: rapidly creating web applica-
tions with d.mix. in UIST '07, (Newport, RI, 2007), 241-
250.

9. Holmes, R., Walker, R.J. and Murphy, G.C. Approxi-
mate Structural Context Matching: An Approach to
Recommend Relevant Examples. IEEE TSE, 32 (12).
952-970.

10. Jensen, S.H., Møller, A. and Thiemann, P., Type Analy-
sis for JavaScript. in 16th International Symposium SAS,
(Los Angeles, CA, 2009), Springer-Verlag, 238-255.

11. Kim, M., Bergman, L., Lau, T. and Notkin, D., An Eth-
nographic Study of Copy and Paste Programming Prac-
tices in OOPL. in ISESE ‘04, (Redondo Beach, CA,
2004), 83-92.

12. Ko, A. and Wobbrock, J., Cleanroom: Edit-Time Error
Detection with the Uniqueness Heuristic. in VL/HCC
'10, (Madrid, Spain, 2010), to appear.

13. Lee, B., Srivastava, S., Kumar, R., Brafman, R. and
Klemmer, S.R., Designing with interactive example gal-
leries. in CHI '10, (Atlanta, GA), 2257-2266.

14. Lieberman, H., Paternò, F. and Wulf, V. End User De-
velopment. Springer, Dordrecht, 2006.

15. Lim, S.C.S. and Lucas, P., JDA: a step towards large-
scale reuse on the web. in OOPSLA '06, (Portland, OR,
2006), 586-601.

16. Mikkonen, T. and Taivalsaari, A., Web Applications –
Spaghetti Code for the 21st Century. in SERP'06, (Las
Vegas, NV, 2008), 319-328.

17. Myers, B., Park, S., Nakano, Y., Mueller, G. and Ko, A.,
How Designers Design and Program Interactive Behav-
iors. in VL/HCC'08, (Herrsching a. Ammersee, Ger-
many, 2008), 177-184.

18. Richards, G., Lebresne, S., Burg, B. and Vitek, J., An
analysis of the dynamic behavior of JavaScript pro-
grams. in PLDI '10, (Toronto, Canada, 2010), 1-12.

19. Rosson, M.B. and Carroll, J.M. The reuse of uses in
Smalltalk programming. ACM TOCHI, 3 (3). 219-253.

20. Sahavechaphan, N. and Claypool, K., XSnippet: Mining
For sample code. in OOPSLA '06, (Portland, OR, 2006),
413-430.

Stylos, J. and Myers, B.A., Mica: A Programming Web-
Search Aid. in VL/HCC '06, (Brighton, UK, 2006), 195-
202.

