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New Challenges

• Large-scale distributed services and applications
– Napster, Gnutella, End System Multicast, etc

• Large number of configuration choices

• K participants ⇒ O(K2) e2e paths to consider
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Role of Network Distance Prediction

• On-demand network measurement can be highly 
accurate, but
– Not scalable

– Slow

• Network distance
– Round-trip propagation and transmission delay

– Relatively stable

• Network distance can be predicted accurately without 
on-demand measurement
– Fast and scalable first-order performance optimization

– Refine as needed
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State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
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What Can be Improved?

• Scalability
• Speed
• Accuracy
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Global Network Positioning (GNP)

• Model the Internet as a geometric space (e.g. 3-D 
Euclidean) 

• Characterize the position of any end host with 
coordinates

• Use computed distances to 
predict actual distances

• Reduce distances
to coordinates

y
(x2,y2,z2)

x

z

(x1,y1,z1)

(x3,y3,z3)
(x4,y4,z4)
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Landmark Operations
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Ordinary Host Operations
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GNP Advantages Over IDMaps

• High scalability and high speed
– End host centric architecture, eliminates server bottleneck
– Coordinates reduce O(K2) communication overhead to 

O(K*D)

– Predictions are locally and quickly computable by end hosts

• Enable new applications
– Structured nature of coordinates can be exploited

• Simple deployment
– Landmarks are simple, non-intrusive (compatible with 

firewalls)
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Evaluation Methodology

• 19 Probes we control
– 12 in North America, 5 in East Asia, 2 in Europe

• 869 IP addresses called Targets we do not control
– Span 44 countries

• Probes measure
– Inter-Probe distances
– Probe-to-Target distances

– Each distance is the minimum RTT of 220 pings
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Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be 
Landmarks, and use the rest for evaluation
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Performance Metric

• Relative error
– Symmetrically measure over and under predictions

),min(

||

predictedmeasured

measuredpredicted−
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GNP Accuracy

5-Dimensional
Euclidean Space Model
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GNP vs IDMaps

5-Dimensional
Euclidean Space Model
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Why the Difference?

• IDMaps tends to heavily over-predict short distances

• Consider (measured ≤ 50ms)
– 22% of all paths in evaluation

– IDMaps on average over-predicts by 150 %

– GNP on average over-predicts by 30%
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Summary

• Network distance prediction is key to performance 
optimization in large-scale distributed systems

• GNP is scalable
– End hosts carry out computations

– O(K*D) communication overhead due to coordinates

• GNP is fast
– Distance predictions are fast local computations

• GNP is accurate
– Discover relative positions of end hosts


