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New Challenges

• Large-scale distributed services and applications
– Napster, Gnutella, End System Multicast, etc

• Large number of configuration choices

• K participants ⇒ O(K2) e2e paths to consider
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Role of Network Distance Prediction

• On-demand network measurement can be highly 
accurate, but
– Not scalable

– Slow

• Network distance
– Round-trip propagation and transmission delay

– Relatively stable

• Network distance can be predicted accurately without 
on-demand measurement
– Fast and scalable first-order performance optimization

– Refine as needed
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Applying Network Distance

• Napster, Gnutella
– Use directly in peer-selection
– Quickly weed out 95% of likely bad choices

• End System Multicast
– Quickly build a good quality initial distribution tree

– Refine with run-time measurements

• Key: network distance prediction mechanism must be 
scalable, accurate, and fast
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State of the Art: IDMaps [Francis et al ‘99]

• A network distance prediction service
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IDMaps Benefits

• Significantly reduce measurement traffic compared to 
(# end hosts)2 measurements

• End hosts can be simplistic
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Challenging Issues

• Scalability
– Topology data widely disseminated to HOPS servers
– Requires more HOPS servers to scale with more client 

queries

• Prediction speed/scalability
– Communication overhead is O(K2) for distances among K 

hosts

• Prediction accuracy
– How accurate is the “Tracers/end hosts” topology model 

when the number of Tracers is small?

• Deployment
– Tracers/HOPS servers are sophisticated; probing end hosts 

may be viewed as intrusive



T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University 8

Global Network Positioning (GNP)

• Model the Internet as a geometric space (e.g. 3-D 
Euclidean) 

• Characterize the position of any end host with 
coordinates

• Use computed distances to 
predict actual distances

• Reduce distances
to coordinates

y
(x2,y2,z2)

x

z

(x1,y1,z1)

(x3,y3,z3)
(x4,y4,z4)
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Landmark Operations
y

x
Internet
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Landmark Operations

• Landmark coordinates are disseminated to ordinary 
end hosts
– A frame of reference

– e.g. (2-D, (L1,x1,y1), (L2,x2,y2), (L3,x3,y3))
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Ordinary Host Operations
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GNP Advantages Over IDMaps

• High scalability and high speed
– End host centric architecture, eliminates server bottleneck
– Coordinates reduce O(K2) communication overhead to 

O(K*D)

– Coordinates easily exchanged, predictions are locally and 
quickly computable by end hosts

• Enable new applications
– Structured nature of coordinates can be exploited

• Simple deployment
– Landmarks are simple, non-intrusive (compatible with 

firewalls)
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Evaluation Methodology

• 19 Probes we control
– 12 in North America, 5 in East Asia, 2 in Europe

• Select IP addresses called Targets we do not control

• Probes measure
– Inter-Probe distances

– Probe-to-Target distances
– Each distance is the minimum RTT of 220 pings
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Evaluation Methodology (Cont’d)

• Choose a subset of well-distributed Probes to be 
Landmarks, and use the rest for evaluation
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Computing Coordinates

• Multi-dimensional global minimization problem
– Will discuss the objective function later

• Simplex Downhill algorithm [Nelder & Mead ’65]
– Simple and robust, few iterations required

f(x)

x
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Data Sets

Global Set
• 19 Probes
• 869 Targets uniformly chosen from the IP address 

space
– biased towards always-on and globally connected nodes

• 44 Countries
– 467 in USA, 127 in Europe, 84 in East Asia, 39 in Canada, 

…, 1 in Fiji, 65 unknown

Abilene Set
• 10 Probes are on Abilene
• 127 Targets that are Abilene connected web servers
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Performance Metrics

• Directional relative error
– Symmetrically measure over and under predictions

• Relative error = abs(Directional relative error)

• Rank accuracy
– % of correct prediction when choosing some number of 

shortest paths

),min( predictedmeasured

measuredpredicted−
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GNP vs IDMaps (Global)
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GNP vs IDMaps (Global)



T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University 20

Why the Difference?

• IDMaps tends to heavily over-predict short distances

• Consider (measured ≤ 50ms)
– 22% of all paths in evaluation

– IDMaps on average over-predicts by 150 %

– GNP on average over-predicts by 30%
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– 22% of all paths in evaluation

– IDMaps on average over-predicts by 150 %
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GNP vs IDMaps (Global)
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GNP vs IDMaps (Abilene)
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GNP vs IDMaps (Abilene)
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GNP vs IDMaps (Abilene)
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Basic Questions

• How to measure model error?
• How to select Landmarks?
• How does prediction accuracy change with the 

number of Landmarks?
• What is geometric model to use? 
• How can we further improve GNP?
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Measuring Model Error

is measured distance

is computed distance

is an error measuring function

))ˆ,((∑= ijij ddferror

ijd

ijd̂

)ˆ,( ijij ddf
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Error Function

• Squared error

• May not be good because one unit of error for short 
distances carry the same weight as one unit of error 
for long distances

2)ˆ()ˆ,( ijijijij ddddf −=
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More Error Functions

• Normalized error

• Logarithmic transformation

2)
ˆ

()ˆ,(
ij

ijij
ijij d

dd
ddf

−
=

2))ˆlog()(log()ˆ,( ijijijij ddddf −=
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Comparing Error Functions

0.510.75
Logarithmic 
Transformation

0.50.74
Normalized 
Error

0.741.03Squared Error

15 Landmarks6 Landmarks
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Selecting N Landmarks

• Intuition: Landmarks should be well separated
• Method 1: Clustering

– start with 19 clusters, one probe per cluster

– iteratively merge the two closest clusters until there are N 
clusters

– choose the center of each cluster as the Landmarks

• Method 2: Find “N-Medians”
– choose the combination of N Probes that minimizes the total 

distance from each not chosen Probe to its nearest chosen 
Probe

• Method 3: Maximum separation
– choose the combination of N Probes that maximizes the total 

inter-Probe distances
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K-Fold Validation

• Want more than just one set of N Landmarks to 
reduce noise

• Select N+1 Landmarks based on a criterion
• Eliminate one Landmark to get N Landmarks
• i.e., N+1 different sets of N Landmarks that are close 

to the selection criterion
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Comparing Landmark Selection Criteria
(6 Landmarks)

5.571.431.39IDMaps

1.040.780.74GNP

Max sep.N-MediansClustering
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Comparing Landmark Selection Criteria
(9 Landmarks)

1.741.091.16IDMaps

0.830.70.68GNP

Max sep.N-MediansClustering
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Landmark Placement Sensitivity

0.231.291.01.84IDMaps

0.0690.740.640.94GNP

Std DevMeanMinMax
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Number of Landmarks/Tracers
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What Geometric Model to Use?

• Spherical surface, cylindrical surface
– No better than 2-D Euclidean space

• Euclidean space of varying dimensions
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Euclidean Dimensionality
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Why Additional Dimensions Help?

A A    B   C   D
A 0    1    5    5
B 1    0    5    5
C 5    5    0    1
D 5    5    1    0

A,B C,D

ISP
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Reducing Measurement Overhead

• Hypothesis: End hosts do not need to measure 
distances to all Landmarks to compute accurate 
coordinates
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Reducing Measurement Overhead

• Hypothesis: End hosts do not need to measure 
distances to all Landmarks to compute accurate 
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Using 9 of 15 Landmarks in 8 Dimensions
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Using 9 of 15 Landmarks in 8 Dimensions
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Triangular Inequality Violations
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Removing Triangular Inequality Violations

• Remove Target (t) from data if
– t in {a, b, c}
– (a,c)/((a,b)+(b,c)) > threshold

• Try two thresholds
– 2.0;   647 of 869 Targets remain

– 1.5;   392 of 869 Targets remain
– Note: at 1.1, only 19 of 869 Targets remain!!!
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Removing Triangular Inequality Violations
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Removing Triangular Inequality Violations
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Removing Triangular Inequality Violations
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Why Not Use Geographical Distance?
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Summary

• Network distance prediction is key to performance 
optimization in large-scale distributed systems

• GNP is scalable
– End hosts carry out computations

– O(K*D) communication overhead due to coordinates

• GNP is fast
– Distance predictions are fast local computations

• GNP is accurate
– Discover relative positions of end hosts
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Future Work

• Understand the capabilities and limitations of GNP
• Can we learn about the underlying topology from 

GNP?
• Is GNP resilient to network topology changes?
• Can we reduce the number of measured paths while 

not affecting accuracy?
• Design better algorithms for Landmark selection
• Design more accurate models of the Internet
• Apply GNP to overlay network routing problems
• Apply GNP to geographic location problems


