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New Challenges

o Large-scale distributed services and applications
— Napster, Gnutella, End System Multicast, etc

e Large number of configuration choices
o K participants [ O(K?) e2e paths to consider
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Role of Network Distance Prediction

 On-demand network measurement can be highly
accurate, but
— Not scalable
— Slow

 Network distance
— Round-trip propagation and transmission delay
— Relatively stable

* Network distance can be predicted accurately without
on-demand measurement

— Fast and scalable first-order performance optimization
— Refine as needed
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Applying Network Distance

« Napster, Gnutella
— Use directly in peer-selection
— Quickly weed out 95% of likely bad choices
e End System Multicast
— Quickly build a good quality initial distribution tree
— Refine with run-time measurements

o Key: network distance prediction mechanism must be
scalable, accurate, and fast
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State of the Art: IDMaps [Francis et al ‘99]

* A network distance prediction service
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IDMaps Benefits

« Significantly reduce measurement traffic compared to
(# end hosts)? measurements

 End hosts can be simplistic
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Challenging Issues

o Scalability
— Topology data widely disseminated to HOPS servers

— Requires more HOPS servers to scale with more client
gueries

* Prediction speed/scalabllity

— Communication overhead is O(K?) for distances among K
hosts

* Prediction accuracy

— How accurate is the “Tracers/end hosts” topology model
when the number of Tracers is small?

 Deployment

— Tracers/HOPS servers are sophisticated; probing end hosts
may be viewed as intrusive
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Global Network Positioning (GNP)

 Model the Internet as a geometric space (e.g. 3-D
Euclidean)

« Characterize the position of any end host with
coordinates

o Use computed distances to (%2,Y2:22)
predict actual distances ooz |

 Reduce distances
to coordinates

(X3,¥3:23) — | (X4:Y4124)
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Landmark Operations
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Landmark Operations
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Internet

« Small number of distributed hosts called Landmarks
measure inter-Landmark distances

o Compute Landmark coordinates by minimizing the
overall discrepancy between measured distances
and computed distances

— Cast as a generic multi-dimensional global minimization
N problem
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Landmark Operations

« Landmark coordinates are disseminated to ordinary
end hosts
— A frame of reference

— €.9. (2-D, (Ly,X1,Y1), (LoiX2,Y2)s (L3iX3,Y3))
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Ordinary Host Operations
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@ Internet
L3
(X3,Y3)

 Each ordinary host measures its distances to the

Ordinary Host Operations
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XV

Landmarks, Landmarks just reflect pings
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GNP Advantages Over IDMaps

« High scalability and high speed
— End host centric architecture, eliminates server bottleneck

— Coordinates reduce O(K?) communication overhead to
O(K*D)

— Coordinates easily exchanged, predictions are locally and
quickly computable by end hosts

 Enable new applications
— Structured nature of coordinates can be exploited
o Simple deployment

— Landmarks are simple, non-intrusive (compatible with
firewalls)
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Evaluation Methodology

19 Probes we control
— 12 in North America, 5 in East Asia, 2 in Europe

o Select IP addresses called Targets we do not control

 Probes measure
— Inter-Probe distances
— Probe-to-Target distances
— Each distance is the minimum RTT of 220 pings
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Evaluation Methodology (Cont'd)

e Choose a subset of well-distributed Probes to be
Landmarks, and use the rest for evaluation
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Computing Coordinates

* Multi-dimensional global minimization problem
— Will discuss the objective function later

o Simplex Downhill algorithm [Nelder & Mead '65]
— Simple and robust, few iterations required
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Data Sets
Global Set
19 Probes
e 869 Targets uniformly chosen from the IP address
space

— biased towards always-on and globally connected nodes

e 44 Countries

— 467 In USA, 127 in Europe, 84 in East Asia, 39 in Canada,
..., 1 In Fiji, 65 unknown

Abilene Set
e 10 Probes are on Abilene
e 127 Targets that are Abilene connected web servers
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Performance Metrics

e Directional relative error
— Symmetrically measure over and under predictions

predicted— measured
min(measuredpredicted

« Relative error = abs(Directional relative error)

 Rank accuracy

— % of correct prediction when choosing some number of
shortest paths

\_
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Cumulative Probability
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GNP vs IDMaps (Global)
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GNP vs IDMaps (Global)
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Why the Difference?

 |IDMaps tends to heavily over-predict short distances

e Consider (measured < 50ms)

— 22% of all paths in evaluation
— IDMaps on average over-predicts by 150 %
— GNP on average over-predicts by 30%
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GNP vs IDMaps (Abilene)

Cumulative Probability
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Directional Relative Error

GNP vs IDMaps (Abilene)
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Basic Questions

e How to measure model error?
e How to select Landmarks?

 How does prediction accuracy change with the
number of Landmarks?

 What is geometric model to use?
 How can we further improve GNP?

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University
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Measuring Model Error

error = Z (f (dij 1aij ))

dij IS measured distance

Ve

d; is computed distance

f(d;,d;) isan error measuring function

\_
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Error Function

e Squared error

f(d, aij) = (dij B aij )’

] !

e May not be good because one unit of error for short
distances carry the same weight as one unit of error
for long distances

\_
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More Error Functions

e Normalized error

. d. —d. ,
f(d;,d;)=( Jd.. -)

J

e Logarithmic transformation

f (dij ’aij ) = (log(dij ) — |Og((:jij )

T. S. Eugene Ng

eugeneng@cs.cmu.edu Carnegie Mellon University
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Comparing Error Functions

6 Landmarks 15 Landmarks
Squared Error | 1.03 0.74
Normalized 074 05
Error
Logarithmic | 0.75 051
Transformation
T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University 29




Selecting N Landmarks

* Intuition: Landmarks should be well separated

 Method 1: Clustering
— start with 19 clusters, one probe per cluster

— Iteratively merge the two closest clusters until there are N
clusters

— choose the center of each cluster as the Landmarks

e Method 2: Find “N-Medians”

— choose the combination of N Probes that minimizes the total
distance from each not chosen Probe to its nearest chosen
Probe

 Method 3: Maximum separation

— choose the combination of N Probes that maximizes the total
inter-Probe distances

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University 30




K-Fold Validation

« Want more than just one set of N Landmarks to
reduce noise

o Select N+1 Landmarks based on a criterion
 Eliminate one Landmark to get N Landmarks

e |.e., N+1 different sets of N Landmarks that are close
to the selection criterion

\_
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Comparing Landmark Selection Criteria

(6 Landmarks)

Clustering | N-Medians | Max sep.
GNP 0.74 0.78 1.04
IDMaps 1.39 1.43 5.57

\
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Comparing Landmark Selection Criteria

(9 Landmarks)

Clustering | N-Medians | Max sep.
GNP 0.68 0.7 0.83
IDMaps 1.16 1.09 1.74

\
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Landmark Placement Sensitivity

Max Min Mean Std Dev
GNP 0.94 0.64 0.74 0.069
IDMaps |1.84 1.0 1.29 0.23

T. S. Eugene Ng
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Number of Landmarks/Tracers
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What Geometric Model to Use?

« Spherical surface, cylindrical surface
— No better than 2-D Euclidean space

 Euclidean space of varying dimensions

T. S. Eugene Ng
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Carnegie Mellon University

36




\_

Cumulative Probability

Euclidean Dimensionality

Felatiwve Error
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Why Additional Dimensions Help?

ISP
A.B C,D
A B CD
A0 1 5 5
B/j1 0 5 5
Ci5 5 0 1
D5 5 1 O
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T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University 38
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A > C
1
B D
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Why Additional Dimensions Help?

ISP
A S C
1
B D
AB Lol 2-dimensional model
A 5
A B CD 1/
A0 1 5 5 B
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Cl5 5 0 1 3-dimensional model
DI5 5 1 O
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Reducing Measurement Overhead

 Hypothesis: End hosts do not need to measure
distances to all Landmarks to compute accurate
coordinates A
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Reducing Measurement Overhead

 Hypothesis: End hosts do not need to measure
distances to all Landmarks to compute accurate
coordinates A

»
D
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Reducing Measurement Overhead

 Hypothesis: End hosts do not need to measure
distances to all Landmarks to compute accurate
coordinates A

»
D

X', Y)
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Using 9 of 15 Landmarks in 8 Dimensions

Cumulative Probability
o
n

0.2
0.1
FReduced Landmarks
Mormal
D 1 1 1
0 0.5 1 1.5
\\7 Relatiwve Error
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Using 9 of 15 Landmarks in 8 Dimensions

Cumulative Probability
o
n

Feduced Landmarks |
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Cumulative Probability

Trianqular Inequality Violations

0 0.5 1 1.5
ta,c) s (la,b)+ (b, c))

T
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Removing Triangular Inequality Violations

« Remove Target (t) from data if
— tin{a, b, c}
— (a,c)/((a,b)+(b,c)) > threshold

e Try two thresholds
— 2.0; 647 of 869 Targets remain
— 1.5; 392 of 869 Targets remain
— Note: at 1.1, only 19 of 869 Targets remain!!!

\_
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Removing Triangular Inequality Violations

Cumulative Probability
o
n

Drigiﬂal data

] 0.5 1 1.5
\\7 Relatiwve Error
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Removing Triangular Inequality Violations

1 . . .

Cumulative Probability
o
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Cumulative Probability

Removing Triangular Inequality Violations

1 . . :
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Removing Triangular Inequality Violations

1 . . :

Cumulative Probability
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Correlation Coefficient

Why Not Use Geoqraphlcal Distance?

1 .

GNP Fredicted DlStaﬂce

D.E 1 1 1 1

] 500 1000 1500 2000
Max Measured Distance (ms)
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Summary

* Network distance prediction is key to performance
optimization in large-scale distributed systems

e GNP Is scalable

— End hosts carry out computations
— O(K*D) communication overhead due to coordinates

e GNP is fast
— Distance predictions are fast local computations

« GNP is accurate
— Discover relative positions of end hosts

T. S. Eugene Ng eugeneng@cs.cmu.edu Carnegie Mellon University
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Future Work

« Understand the capabilities and limitations of GNP

e Can we learn about the underlying topology from
GNP?

* |s GNP resilient to network topology changes?

e Can we reduce the number of measured paths while
not affecting accuracy?

« Design better algorithms for Landmark selection
e Design more accurate models of the Internet

* Apply GNP to overlay network routing problems
* Apply GNP to geographic location problems
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