
Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 1

Packet Fair Queueing Algorithms for
Wireless Networks with Location-

Dependent Errors

T. S. Eugene Ng, Ion Stoica, Hui Zhang

School of Computer Science

Carnegie Mellon University



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 2

Outline

• Generalized Processor Sharing (GPS) and Packet
Fair Queueing (PFQ)

• Simplified wireless network model
• Why GPS does not work well for wireless networks
• Related work
• Channel-condition Independent Fair (CIF) properties
• Achieving CIF properties -- the CIF-Q algorithm
• Theoretical results
• Simulation results
• Conclusions



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 3

Generalized Processor Sharing (GPS)

w1

w2

w3

R

GPS

Fluid flows

Service

w1 w2 w3

Time

Virtual Time
(normalized service)

t0

t1

Packet Fair Queueing (PFQ) is the packet by packet approximation of GPS



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 3

Generalized Processor Sharing (GPS)

w1

w2

w3

R

GPS

Fluid flows

Service

w1 w2 w3

Time

Virtual Time
(normalized service)

t0

t1

Packet Fair Queueing (PFQ) is the packet by packet approximation of GPS



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 4

Packet Fair Queueing (PFQ)
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Why are GPS and PFQ desirable?

• End-to-end delay bound for guaranteed service
[Parekh and Gallager ‘93]

• Fair allocation of bandwidth for best effort service
[Demers et al. ‘89, Parekh and Gallager ‘92]

• Work-conserving for high link utilization
• Flexible for diverse QoS needs



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 6

Simplified wireless network model

• Shared-channel wireless cellular network
– e.g. Lucent’s WaveLAN

• Centralized packet scheduling at the base station
– Coupled with media access control

• Instantaneous knowledge
– Channel condition of each session (in error or not)

– Status of uplink sessions (backlogged or not)

• Location-dependent channel errors
– Good or bad
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GPS with location-dependent errors

• Session 1 enters error at time t0
• Session 1 exits error at time t1
• What should GPS do after time t1?

– To compensate or not to compensate?
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GPS with location-dependent errors
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Two plausible simple solutions

• Equalize the virtual times by bumping up session 1’s
virtual time artificially
– Delay bounds for error-free sessions hold
– Error-free sessions get extra service, but...

– No fairness

• Equalize the virtual times by serving session 1
exclusively
– Perfect fairness, but...
– Other sessions receive no service

– Sessions see abrupt changes in service

– No delay bound



Tze Sing Eugene Ng        eugeneng@cs.cmu.edu Carnegie Mellon University 10

Related work

• Idealized Wireless Fair Queueing (IWFQ)
[ Lu et al. SIGCOMM ‘97 ]
– Control total amount of compensation, B
– Provide delay bounds for error-free sessions

– Deal with practical implementation issues
• Channel condition detection and prediction
• Session status detection

• Media access control
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Channel-condition Independent Fair (CIF)

• Delay and throughput guarantees for error-free
sessions
– Independent of other sessions’ error

• Long-term fairness for error sessions
– No artificial bound

• Short-term fairness for error-free sessions
– Similar to GPS’s fairness property

• Graceful degradation for sessions that have received
excess service
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Achieving CIF properties -- the
Channel-condition Independent packet

Fair Queueing (CIF-Q) algorithm
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Key techniques used in CIF-Q

• Use an error-free reference system for scheduling
– Based on SFQ [Goyal et al. SIGCOMM ‘96]

• Use a parameter lagi to keep track of the difference
between the real system and the reference system

• Leading sessions give back only a fraction of their
service

• Leading unbacklogged sessions are not allowed to
leave the active set to ensure fairness

• Use forced compensation to ensure delay bounds
• Use extra virtual times to distribute services fairly to

leading and non-leading sessions
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Use lagi to keep track of deviations
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Leading sessions give back service to
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CIF-Q in a nutshell

• Select a session i based on reference system
sessions’ virtual times

• If session i is not in error and is allowed to keep this
service, serve session i normally

• Otherwise, select session j with the largest
normalized lagj

– Serve session j but charge  service to session i
– Adjust lagi and lagj accordingly
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Leading sessions give back only a
fraction of their service

• System parameter α controls how much service is
retained by leading sessions
–

– At most (1 - α ) of the service is given back

• Control the speed of compensation, not  the amount
of compensation

• Achieve graceful degradation in service for leading
sessions

10 dd D
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Leading unbacklogged sessions are not
allowed to leave

• Leading unbacklogged sessions have negative lagi

• Must ensure that they give back their lead before
removing them from the active set
– Maintain invariant

– Prevent sessions from endlessly gaining extra services

– Prevent sessions from getting penalized unnecessarily in the
future
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Use forced compensation when
necessary

• When all backlogged sessions are in error and a
leading session needs to give up its lead

• Must force compensation onto a lagging error
session to ensure error-free sessions’ delay bounds
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Forced compensation
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Forced compensation

• Pick a lagging error session
• Force a small amount of compensation onto this error

session
– Charge the service to the leading unbacklogged session

– Adjust virtual times and lagi accordingly
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Fair allocation of services

• Use extra virtual time variables to distribute services
fairly to leading and non-leading sessions
– Sessions in the same state (leading or non-leading) are

treated the same way
– As opposed to the session with the largest lag getting all

compensation exclusively

• Ensure short-term fairness
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What have we accomplished?

• Decoupled delay and fairness properties
– Use an error-free reference system for scheduling, ensure

no divergence in sessions’ virtual times vi

– Use a second session parameter lagi to keep track of the
difference between the real system and the reference
system, ensure long-term fairness

• Ensured graceful degradation
– Leading sessions give back only a fraction of their service
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Theoretical results on CIF-Q

• Delay bound for an error-free session is within one
packet transmission time at the session’s rate of the
bound provided by SFQ

• A lagging session is guaranteed to get compensated
for its lag when it becomes error-free

• The normalized amount of service received by two
sessions in the same state (leading or non-leading) is
tightly bounded
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Simulation results

Pattern 1: Periodic error burst of 1.6 second with 3.2 seconds of error-free time

Pattern 2: Periodic error burst of 0.5 second with 5.5 seconds of error-free time

Packet size Guaranteed rate Source model Error

FTP-1 3 KB 2 Mbps Greedy None

FTP-2 3 KB 2 Mbps Greedy Pattern 1

FTP-3 8 KB 2 Mbps Greedy Pattern 2

FTP-4 8 KB 2 Mbps Greedy Pattern 1

Video 8 KB 1.25 Mbps CBR None
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FTP sessions progression

α = 0.9 α = 0.0

Error bursts from t = 0 to t = 45, error free for t > 45
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Video packet delay

α = 0.9 α = 0.0

For comparison, GPS would guarantee a delay bound of 50 ms if the system is error-free
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Audio packet delay

α = 0.9 α = 0.0

For comparison, GPS would guarantee a delay bound of 50 ms if the system is error-free
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Other related work

• Channel State Dependent Packet Scheduling (CSDP)
[Bhagwat et al. INFOCOM ‘96]
– Defer link layer retransmission for error sessions
– Eliminate head-of-line blocking

– Does not focus on providing guarantee and fairness

• CBQ based CSDP [Fragouli et al. INFOCOM ‘98]
– Modify CBQ to tune rates of sessions to achieve some fairness

– Difficult to characterize service precisely
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Other related work

• Server Based Fairness Approach [Ramanathan and
Agrawal. MOBICOM ‘98]
– General approach to augment any PFQ algorithm
– Explicitly set aside fixed bandwidth for compensation

– Essentially penalize all error-free sessions to obtain
compensation service since some bandwidth is reserved

– Require 2n queues and a hierarchical scheduler to achieve
fairness for n sessions
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Conclusions

• GPS cannot be applied directly to wireless networks
• CIF identifies the four desirable properties in a

wireless environment
• Four novel algorithmic techniques introduced in CIF-

Q to achieve all CIF properties
– Use reference error-free system for scheduling

– Use lagi to keep track of deviations

– Leading sessions are not allowed to leave the active set
– Use forced compensation to ensure delay bounds

• CIF-Q provides delay bound similar to that of SFQ
• Low delay bound and long-term fairness can co-exist


