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Abstract—We propose a new approach to predict Internet Landmarks’ coordinates) can then be derived based on the
network distance called Global Network Positioning (GNP). host’s distances to the Landmarks.

This approach models the Internet as a geometric space and Alth h off-line pre-computations are r ired to de-
distributedly computes geometric coordinates to character- ough © € pre-computations are required to ae

ize the positions of hosts in the Internet. By conducting In- Ve the coordinates of Landmarks and hosts, modeling
ternet experiments, we show that the geometric distancesthe Internet as a geometric space and communicating dis-
implied by the GNP host coordinates can accurately predict tance information using coordinates have several advan-
the Internet network distances. tages over the traditional approach of modeling the Inter-
net as a simplified topology and communicating distance
information using individual path distances. First of all, a
distance prediction in the geometric space model is simply
In this paper, we present a new approach to the netwaiik evaluation of the distance function which is generally
distance (i.e. round-trip transmission and propagation dsoth straight-forward to implement and extremely fast to
lay) prediction problem. We call this approach Global Netompute comparing to a shortest path search in the topol-
work Positioning (GNP). ogy model. Secondly, in a multi-party application, the
The fundamental result we demonstrate is that it is fedistances of all paths betwedt hosts can be efficiently
sible to inexpensively model the Internet as a geometgéommunicated by sets of coordinates of sizB each
space (e.g. a 3-dimensional Euclidean space) in whi@le. O(K - D) of data), whereD is the dimensionality of
there is a well-defined coordinate system and a cortée geometric space, as opposedtas — 1) /2 individual
sponding well-defined distance function, and characteridistances (i.e.Q (K ?) of data). Thirdly, host coordinates
the position of any host in the Internet by a point in thiare relatively fixed local properties that can be exchanged
space such that the distance between any two hosts caedmly among hosts when they discover each other, allow-
predicted with high accuracy by the output of the distanagg network distance predictions to be locally computed
function evaluated on the hosts’ coordinates. by end hosts in a timely fashion. Finally, we can exploit
To efficiently map Internet hosts to points in a geomethe structured nature of the coordinates to build efficient
ric space, the key technique is to first compute the coord@ta structures (e.g. using kd-trees) to perform operations
nates of a small distributed set of cooperating hosts calléte nearest neighbors searches.
Landmarks based on the inter-Landmark distances. ThesNP makes it possible to providealable fast and

Landmarks’ coo.rdinates serve as a frame of refer.ence Wétifectivenetwork performance optimization in distributed
which the coordinates of any ordinary host (relative to theatwork services and applications such as application level
_ anycast, end systems based multicast, shortest-path proxy
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ther scalable, due to the amount of measurement traffic
they generate, nor fast when a large number of network
paths need to be probed. GNP provides a very light-
weight mechanism for first-order performance optimiza-
tion. Heavy-weight mechanisms can be used when further
refinement is needed.

I. INTRODUCTION
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Fig. 1. Part 1: Landmark operations.
Fig. 2. Part 2: Ordinary host operations.
In the next section, we propose a specific architecture

to realize GNP and discuss its properties. In Section lthe computed distances &is minimized. Formally, we

we evaluate the effectiveness of GNP by conducting Intgeek to minimize the following objective functigy,;i ():
net experiments and compare GNP’s performance to that

of the current state-of-the-art approach IDMaps [1]. We

. . . . S S
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[I. GLOBAL NETWORK POSITIONING where&(-) is an error measurement function, which we

To realize GNP, we propose a two-part architecture f100Se it to be
which a small distributed set of hosts called Landmarks 5s
first compute their own coordinates in a chosen geometri B v> — D, 2

pute their own coordinates in a chosen geometric ) 2)

space. These coordinates are then disseminated to any host A 3,

who wants to compute its own coordinates relative to thecause this function measures error in a weighted fashion
coordinates of the Landmarks. In the following sectionand has been shown in our experiments to produce more
we describe this two-part architecture in detail and discusscurate coordinates than the un-weighted squared error
its properties. function. This computation of the coordinates can be cast
as a generic multi-dimensional global minimization prob-
lem that can be approximately solved by many available

Suppose we want to model the Internet as a particutaethods. Figure 1 illustrates these Landmark operations
geometric spacé. Let us denote the coordinates of a hoor 3 Landmarks in the 2-dimensional Euclidean space.

# in S ascs, the distance function that operates on theseOnce the Landmarks’ coordinateg, , .., ¢Z, , are com-
coordinates ag® (-), and the computed distance betweeputed, they are disseminated, along with the identifier for
hostsH; and#s, i.e. f5(c5;,,c5,,), asdg, 5, - the geometric spac§ used and (perhaps implicitly) the

The first part of our architecture is to use a small disorresponding distance functiof (-), to any ordinary

tributed set of hosts known as Landmarks to provide a $wist that wants to participate in GNP. The amount of data
of reference coordinates necessary to orient other hostéarglisseminate is very small and grows only linearly with
S. How to choose the locations and the number of Lanthe number of Landmarks. In this discussion, we leave the
marks remains an open question, although we will provigéssemination mechanism (e.g. unicast vs. multicast, push
some insights in Section lll. Suppose there Ard.and- Vvs. pull, etc) and protocol unspecified.
marks, £1 to Lx. The Landmarks simply measure the _ _
inter-Landmark round-trip times using ICMP ping meds: Part2: Ordinary Host Operations
sages and take the minimum of several measurements fdn the second part of our architecture, ordinary hosts are
each path to produce the bottom half of tNex N dis- required to actively participate. Using the coordinates of
tance matrix (the matrix is assumed to be symmetric alotige Landmarks in the geometric spage each ordinary
the diagonal). We denote the measured distance betwhest now derives its own coordinates. To do so, an or-
host?#, andH; asdy,w,. Using the measured distancesjinary host measures its round-trip times to fhid_and-
a host, perhaps one of the Landmarks, computes themarks using ICMP ping messages and takes the minimum
coordinates of the Landmarks & The goal is to find a of several measurements for each path as the distance. In
set of coordinates;‘zl, vy c‘ZN, for the N Landmarks such this phase, the Landmarks are completely passive and sim-
that the overall error between the measured distances ahdreply to incoming ICMP ping messages. Using the

g(dH1H27 dA%lHQ) = (

A. Part 1: Landmark Operations



N measured host-to-Landmark distances, an ordinary hastData Collection
# can compute its own coordinatef, that minimize the We have access to 19 hosts called probes distributed

overall error be_tween the measured and the corr_1p_ut_ed h?ﬂ?&und the world that can potentially serve as Landmarks.
to-Lar_ldmarI_< dls_tances._FormaIIy, we seek to minimize tl192 of these probes are in North America, 5 are in Asia
following objective function/osz(-): Pacific, and 2 are in Europe. Excepting one probe that is
located in a research lab, all the probes are located in aca-
foia(G) = > E(deu.din) (3) demic institutions. In addition, we probe the IP address
Lie{L1, LN} space uniformly to collect 2000 “ping-able” IP addresses.
We shall call these IP addresses targets.
wheref (-) is again the error measurement function as dis-|n the last week of May 2001, we measured the dis-
cussed in the previous section. tances between the 19 probes and the distances between
Like deriving the Landmarks’ coordinates, this comeach probe and the 2000 targets. The measurement process
putation can also be cast as a generic multi-dimensiotested over 30 hours. To measure the distance between two
global minimization problem. Figure 2 illustrates theskosts, we sent 220 84-byte ICMP ping packets at one sec-
operations for an ordinary host in the 2-dimensional Eond apart and took the minimum round-trip time estimate

clidean space with 3 Landmarks. from all replies as the distance. Because not all 2000 tar-
gets were reachable from all probes at the time of our data
C. Properties collection, we only ended up with 869 usable targets. Cor-

respondingly, there is a bias against having hosts that are

Suppose there ar® Landmarks and the dimensionality, always-on (e.g. modem hosts) or do not have global
of the geometric space model i3, then our architecture connectivity in our final targets set.

has the following properties:
« Measurement cost:0 (N ?) paths are measured to comB. Experiment Methodology

pute the Landmarks’ coordinates. To compute the coordi-gach experiment involves selecting a subset of the 19
nates of an ordinary hos?,( V) paths are measured. Thesﬁrobes to use as Landmarks, and uses the remaining

costs can potentially be reducezd in future algorithms.  yhes called test probes, and the 869 targets as ordinary
o Communication cost: O(N?) inter-Landmark dis- psts This way, we can evaluate the performance of GNP

tances are communicated in computing Landmarks’ Co@fy -omparing the predicted distances and the measured
dinatesO(N - D) of Landmark coordinates data is dissenistances from the test probes to the targets.

inated to each participating host to fidate coordinates 14 gqve the multi-dimensional global minimization

computations. When exchanging coordinates for makilghhjems in computing coordinates, we use the Simplex
distance prediction&) (- D) coordinates data can compqnhill method [2]. To ensure a high quality solution,
municateO (k) distances among hosts. _ we repeat the minimization procedure for 300 iterations
« Computation cost: In computing Landmarks’ coordi- 5, choose the best solution when computing Landmarks’
nates, each evaluation g, (-) takesO(N* - D) time. o5 dinates (each iteration takes on the order of a second
In computing end host coordinates, each evaluation gf » ggg MHz Pentium Iil), and for 30 iterations when
Jonj2(+) takesO(N - D) time. In making distance predic-c,m . ting an ordinary host's coordinates (each iteration
tions, each evaluation of the distance function tak€®) 55 on the order of ten milliseconds on a 866 MHz Pen-
time. - tium 11).

« Deployment cost: Landmarks are non-intrusive and 1 neasyre how well a predicted distance matches the

very simple, hence compatible with firewalls and easy {Qesponding measured distance, we use a metric called
deploy. directional relative error that is defined as:

1. EVALUATION predicted distance — measured distance

(4)

min(measured distance, predicted distance)
In this section, we evaluate the effectiveness of GNP by
conducting Internet experiments. Due to space limitatiohlus, & value of zero implies a perfect prediction, a value
we will use the 5-dimensional Euclidean space model @ one implies the predicted distance is larger by a factor
all experiments, and we will focus on the questions of holee would like to thank our colleagues in these institutions for grant-
to select Landmarks and how the number of Landmarkg us host access. We especially thank KAIST, NHEUST, ETH,
affects performance. and Politecnico di Torino for their generous support for this study.
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Fig. 3. Landmark selection criteria comparison. Fig. 4. Relative error of GNP and IDMaps.

of two, and a value of negative one implies the predictetbn. However, the maximum separation criterion lags be-
distance is smaller by a factor of two. When considerirgnd in performance significantly because probes that are
the general prediction accuracy, we will also userdle overall far apart (those in Asia and Europe) are not neces-
ative error metric, which is simply the absolute value o&arily well distributed. The same performance relationship

the directional relative error. between the three selection criteria is also observed in an-
_ other experiment wher® equals 9. Designing intelligent
C. Landmark Selection algorithms for Landmark selection is an important topic

In this section, we consider the Landmark selectidfr future research.
problem. Intuitively, we would like the Landmarks to be
well distributed so that we can construct an accurate fraljae
of reference. Based on this intuition, we propose threeln this section, we examine how GNP’s performance
strawman criteria to choos® Landmarks from the 19 changes when we vary the number of Landmarks from
probes. The first criterion, called maximum separatiofi, to 15. In all experiments, we use th€-cluster-
is to choose theV probes that maximize the total intermedians Landmark selection criterion witkfold valida-
chosen-probe distances. The second criterion, called tion. For comparison, we also examine the performance
medians, is to choose thé probes that minimize the totalof the current state-of-the-art distance prediction approach
distance from each not-chosen probe to its nearest cHdMaps [1] when applied to our data, using the corre-
sen probe. The third criterion, called-cluster-medians, sponding Landmark nodes as the IDMaps Tracers. See
is to form N clusters of probes and then choose the m8&ection IV for a discussion on IDMaps.
dian of each cluster as the Landmarks. Tkeclusters  Figure 4 shows the cumulative probability distribution
are formed by iteratively merging the two nearest clustefgnctions of the relative error in distance predictions for
starting with 19 probe clusters, until we are left with GNP (top 4 lines) and IDMaps. As expected, GNP’s per-
clusters. formance increases with the number of Landmarks, and

To increase the confidence in our results, we use a tetiere is no indication of diminishing returns in these ex-
nique that is similar t&-fold validation in machine learn- periments. In contrast, IDMaps with 15 Tracers does not
ing. Instead of choosingy Landmarks based on a critefperform better across the spectrum than with 12 Tracers.
rion, we chooseV + 1 Landmarks. Then by eliminatingFor GNP with 15 Landmarks, 90% of all distance predic-
one of theV + 1 Landmarks at a time, we can generatéons are within a relative error of 0.53; for IDMaps with
N +1 different sets ofV Landmarks that are fairly close tol5 Tracers, the 90 percele is at 0.96.
satisfying the criterion. We then measure the performance _
of the criterion by evaluating the accuracy of the predictéd GNP and IDMaps Comparison
distances generated by &ll+ 1 sets of Landmarks. Figure 5 illustrates the difference in predictiaccuracy

Figure 3 shows the cumulative probability distributiobetween GNP and IDMaps in more detail. In this fig-
functions of the relative error in distance predictions farre, we classify the evaluated paths into groups of 50ms
the three selection criteria whe¥ equals 6. As can beeach (i.e. (Oms, 50ms], (50ms, 100msJ1000ms;c]),
seen, theN-cluster-medians criterion achieves the beahd plot the summary statistics that describe the distribu-
performance, closely followed by th&-medians crite- tion of the directional relative error of each approach in

Number of Landmarks



5T ‘ ‘ v distance in the Internet. In IDMaps, hosts called Tracers
et T are deployed to measure the distances between themselves,
possibly not the full mesh to reduce cost, and each Tracer
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ﬁ { ] ments are broadcasted over IP multicast to hosts call HOPS
servers which use the raw distances to build a virtual topol-
o ] ogy map of the Internet and serve client queries for host-to-
sl | host distance predictions. Under IDMaps, the distance be-
0 w o D‘s‘ancesfffms Peeru;éo 1000 tween hostsd and B is estimated as the distance between
A and its nearest Tracéf, plus the distance betweéh
and its nearest Tracéf, plus the shortest path distance
from 7; to 7, over the Tracer virtual topology.
each group. Each set of statistics is plotted on a verticalThe main architectural difference between IDMaps and
line. The mean directional relative error of each approaiNP is that end hosts are not active participants in IDMaps
is indicated by the squares (GNP) and triangles (IDMapsnd thus they are shielded from the complexity of the prob-
The 5th percentile and 95th percentile are indicated by tlegn. The disadvantage of this approach is that Tracers and
outer whiskers of the line, the 25th percentile and 75th pétOPS servers have more responsibilities and thus there are
centile are indicated by the inner whiskers of the line. Nop®tential scalability and deployability concerns.
that in some cases these whiskers are off the chart. FinallyHHowever, the most important distinction between GNP
the asterisk (*) on the line indicates the median. and IDMaps is that GNP models the Internet as a simple
We can see that GNP is more accurate in predictiggometric space as opposed to a topology. This approach
distances of less than 350ms, especially distances of lesgls to many unique advantages as discussed in Section .
than 50ms. IDMaps tends to over-predict distances in thisin terms of prediction accuracy, in our experiments, we
range. Note that paths shorter than 350ms account for ok@ve shown that when the number of Tracers or Landmarks
94% of all evaluated paths. The intuitive reason for GNP's relatively small, GNP out-performs IDMaps. It remains
better performance is that GNP is able to exploit the rto be seen whether this advantage exists when the number
lationships between the positions of Landmarks and eatiTracers or Landmarks is large.
hosts in the Internet. In contrast, IDMaps predicts dis-
tance based on a simplified virtual topology model of the
Internet which is more restrictive and thus the predictionsWe have proposed Global Network Positioning as a new
tend to be pessimistic. Between 350ms and 550ms, GBsproach to predict Internet network distance and it is
tends to under-predict distances, but the directional rel&ique in several ways. First, GNP models the Internet
tive error distributions of GNP are still more concentratess a geometric space and uses coordinates to characterize
around zero than those of IDMaps, excepting the grothe positions of end hosts. Secondly, end hosts are active
(450ms, 500ms] in which GNP performs slightly worseparticipants in our GNP architecture. These characteris-
Paths in this range only account for 3.1% of all evaluateits lead to fast and scalable distance computations, scal-
paths. Further investigation is needed to understand wdityle distance information dissemination, and enable new
GNP tends to under-predict distances in this range. Bapplications that exploit the structured nature of host co-
yond 800ms, we see large under-predictions by both apedinates. We have provided the initial evidence that GNP
proaches, with GNP having larger under-predictions. Boan accurately predict network distances. We will continue
since these paths account for less than 0.7% of all evid-explore various geometric space models and algorithms
uated paths, the results are not necessarily representativehe GNP framework in the future.
In the last group, there are several abnormal outliers of
distances of over 6000ms, contributing to the large under- REFERENCES
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Fig. 5. Directional relative error of GNP and IDMaps.

V. CONCLUSION



