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Abstract

While PFQ algorithms can provide per-flow end-to-end de-
lay guarantees for real-time traffic or protection among com-
peting best-effort traffic, they have two important limitations.
The first one is that, since only one parameter (a weight) is
used to allocate resource for each flow, there is a coupling
between delay and bandwidth allocation. When used for
real-time traffic, this can result in network under-utilization.
The second and less well known limitation is that, when
used for best-effort traffic, PFQ algorithms favor throughput-
oriented applications such as FTP over delay-sensitive bursty
applications such as WWW, and telnet. This is due to the
memory-less instantaneous fairness property of PFQ algo-
rithms. In a previous study [1], we proposed the Fair Ser-
vice Curve (FSC) algorithm which enables more flexible de-
lay and bandwidth allocation for real-time traffic through the
use of non-linear service curves. In this paper, we show that,
when used for best-effort traffic, FSC can improve perfor-
mance of delay-sensitive bursty applications without nega-
tively affecting the performance of throughput-oriented ap-
plications.

1 Introduction

With the rapid growth of the Internet and the advancement
of router technologies, we see two important trends. On
one hand, best-effort data traffic continues to account for
the majority of the Internet’s traffic. On the other hand, ad-
vanced routers with sophisticated queue and buffer manage-
ment capabilities are becoming available. While there is a
huge body of literature on using advanced buffer manage-
ment and packet scheduling algorithms to support real-time
continuous media traffic, there is relatively less work on how
to exploit these algorithms to better support best-effort data
traffic. This paper is aimed to address the latter issue.

Packet Fair Queueing (PFQ) algorithms (i.e., Weighted
Fair Queueing [2, 3] and its many variants [4, 5, 6, 7]) have
become ones of the most popular algorithms implemented in
today’s advanced switches and routers [8, 9] because these
algorithms provide support for both real-time and best-effort
traffic. Intuitively, PFQ allocates to each backlogged flow a
share of service in proportion to its weight. When used with
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Figure 1: Improving burst delays

reservation, PFQ can guarantee a flow a minimum band-
width which can in turn provide end-to-end delay guaran-
tees for constrained flows. Without reservation, these algo-
rithms can provide best-effort service since they can allocate
bandwidth fairly among competing flows, protecting well-
behaved flows against ill-behaved ones.

When used for best-effort service, PFQ favors continu-
ously backlogged traffic over short lived bursty traffic. This
is because PFQ is designed to achieve instantaneous band-
width fairness for all flows, irrespective of their delay re-
quirements. In reality, different types of best-effort data traf-
fic, such as Telnet, FTP, and WWW, have different character-
istics and thus performance objectives. For example, while
the burst delay is the performance index for interactive ser-
vices, the average throughput is the performance index for
bulk transfer applications such as FTP. The key observation
is that, since the performance index of bulk-transfer applica-
tions is determined over relatively long time scales, we may
be able to exploit these applications’ insensitivity to short
term service variations to improve the performance of delay
sensitive bursty applications.

To illustrate how this may be realized, consider a 2 Mbps
link shared by one long flow that transfers 1 MB, and sev-
eral short flows that transfer 50 KB each. Assume that the
link is managed by PFQ and each flow has a weight of one.
For simplicity, assume that all flows are continuously back-
logged, and that once a short flow finishes, another short flow
starts immediately. Thus, there are exactly two flows, the
long flow and a short flow, backlogged at any given time. As
a result each backlogged flow is allocated 1 Mbps. There-



fore, as shown in Figure 1 (a), the long flow takes8 seconds
to finish, while a short flow takes0:4 second to complete.
Now consider the case where all short flows are assigned
three times the weight of the long flow. Each short flow now
receives1:5 Mbps, which consequently reduces its latency
by 33% to 0:27 second. At the same time, the transfer time
of the long flow doesnot change. Thus, by assigning dif-
ferent weights, it is possible to significantly speed-up short
transfers without affecting the longer flow.

In order to achieve this performance, a system would ei-
ther need to estimate the length of a flow when it becomes
backlogged, or dynamically reduce the flow’s weight after
the length of the transfer exceeds a certain threshold. While
it is unclear how this could be implemented in a system
based on PFQ, the service curve framework in an FSC sys-
tem enables us to clearly specify the burst threshold and the
higher relative share that these bursts should receive.

In this paper, we show that FSC can out-perform PFQ
in supporting best-effort traffic, even in the case when we
assign thesameservice curve toall flows.1

2 Packet Fair Queueing (PFQ) and Fair Service Curve
(FSC) Algorithms

In this section, we first explain the central ideas behind var-
ious PFQ algorithms. Then we present the concepts behind
service curve based algorithms and describe the Fair Service
Curve (FSC) algorithm we use in this paper for supporting
best-effort traffic.

2.1 PFQ Algorithms

Packet Fair Queueing (PFQ) algorithms are based on the
GPS model [3]. In GPS, each flowi is characterized by
its weight,�i. During any time interval when there are ex-
actlyn non-empty queues, the server serves then packets at
the head of the queues simultaneously, in proportion to their
weights.

Each PFQ algorithmmaintains a system virtual timevs(�)
which represents the normalized fair amount of service that
each flow should have received by timet. In addition, it as-
sociates to each flowi a virtual start timevi(�), and a virtual
finish timefi(�). Intuitively,vi(t) represents the normalized
amount of service that flowi has received by timet, and
fi(t) represents the sum betweenvi(t) and the normalized
service that flowi should receive for serving the packet at
the head of its queue (determined by the flow’s weight�i).
The goal of all PFQ algorithms is then to minimize the dis-
crepancies amongvi(t)’s andvs(t). This is usually achieved
by selecting for service the packet with the smallestvi(t)
or fi(t). The system virtual time is primarily used to re-
setvi(t) whenever an unbacklogged flowi becomes back-
logged again. Intuitively, PFQ allocates toeach backlogged
flow a share of service in proportion to its weight. This way
PFQ achieves instantaneous fairness for backlogged flows.
In addition, if a flow previously received service beyond its
(weighted) fair share, it will not be punished in the future.

The main problem with PFQ algorithms is that they cou-
ple the delay and bandwidth allocation. More precisely, if
flow i is assigned a rate�i, then it can be shown that the

1Although this requires per flow queueing, it does not require the scheduler to
distinguish between different types of flows.
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Figure 2: Sample service curves.

worst case queueing delay per node incurred by a packetpk
i

is
lki
�i

+
lmax
C

; (1)

wherelmax represents the maximum size of a packet, andC
represents the capacity of the output link. Thus, the only way
to reduce the worst case delay is to increase the reservation
�i. However, this may lead to inefficient resource utiliza-
tion in the presence of low-bandwidth low-delay flows. As
an example, consider a 64 Kbps audio flow with 160 byte
packets. To achieve a worst case delay of 5 ms, according to
Eq. (1), one should reserve2 256 Kbps, which is four times
more than the flow’s bandwidth requirement!

2.2 Service Curve Model

To address this problem, Cruz has proposed a new service
model, called service curve (SC) [10, 11], in the context of
real-time guaranteed traffic. In this model, each flow is as-
sociated with a service curveSi(�), which is a continuous
non-decreasing function. A flowi is said to be guaranteed a
service curveSi(�), if for any timet2 when the flow is back-
logged, there exists a timet1 < t2, which is the beginning of
one of flowi’s backlogged periods (not necessarily including
t2), such that the following holds

Si(t2 � t1) � wi(t1; t2); (2)
wherewi(t1; t2) is the amount of service received by flow
i during the time interval(t1; t2]. For packet systems, we
restrictt2 to be packet departure times. One algorithm that
supports service curve guarantees is the Service Curve Earli-
est Deadline first (SCED) algorithm[12]. SCED can guaran-
tee all the service curves in a system if and only if

P
i
Si(t) �

C �t holds for anyt � 0, whereC is the output link capacity.
Even though any continuous non-decreasing function can

be used as a service curve, for simplicity, usually only two
types of non-linear service curves are considered: two-piece
linear concave curves (Figure 2(a)), and two-piece linear
convex curves (Figure 2(b)). A two-piece linear service curve
is characterized by four parameters:m1, the slope of the
first segment;m2, the slope of the second segment;�, the
y-projection of the intersection point of the two segments;
d, the x-projection of the intersection point of the two seg-
ments. Intuitively,m2 specifies the long term throughput
guaranteed to a flow, whilem1 specifies the rate at which a
burst of size� is served. Note that a real-time flow served
by PFQ can be thought of as having a straight-line service
curve that passes through the origin and have a slope of the
guaranteed rateri.

2Note that here we ignore the second termlmax
C

, asC is usually very large.
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Figure 3: Measured bandwidth of two TCP sessions, which
startup 2 seconds apart under SCED.

By using two-piece linear service curves, both delay and
bandwidth allocation are taken into account in anintegrated
fashion, yet the allocation policies for these two resources
are decoupled. This increases the resource management flex-
ibility and the resource utilization inside the network. To il-
lustrate, consider again the example described in Section 2.1.
In SCED, the audio flow can be assigned a service curve with
the following parameters:m1 = 256 Kbps,m2 = 64 Kbps,
� = 160 bytes, andd = 5ms. If the packet arrival process is
periodic, then it can be shown by using Eq. (2) that this ser-
vice curve guarantees a worst case delay of 5 ms. However,
unlike PFQ which requires 256 Kbps of bandwidth to be re-
served to achieve the same delay, with SCED the long term
reserved bandwidth is only 64 Kbps. This creates the oppor-
tunity to allocate the remaining bandwidth to other delay-
tolerant traffic, such as FTP.

The main drawback of SCED is that it punishes a flow
that has received service beyond its service curve. While
the SCED algorithm can guarantee all the service curves
simultaneously, it does not have the fairness property. As
an example, consider two TCP sessions sharing a 10Mbps
link scheduled by SCED which start up two seconds apart.
Both sessions are assigned the same service curve withm1
four times larger thanm2 and the inflection point occurs at
� = 6000 bytes. Figure 3 plots the bandwidth received by
these two sessions under SCED. Under SCED, once the sec-
ond session starts up, the first session is denied any service
for approximately 2 seconds. Such behavior clearly discour-
ages adaptive flows from sharing the available link capacity.
This is the same type of behavior as that exhibited by the
well known Virtual Clock (VC) service discipline [13]. In
fact, ifm1 = m2, SCED reduces to VC.

A related problem is that, in SCED, the service curve is
defined in terms ofabsoluterates and real time. This makes
sense only in a system that employs admission control. In
a best effort system, what matters isrelative performance.
However, in SCED, the relation between two service curves
does not uniquely determine the service received by each
flow. As a result the absolute values of the weights or reser-
vations cannot be arbitrarily set. In contrast, in PFQ and Fair
Service Curve (FSC), scaling the parameters of each flow
by the same amount doesnot change the service received
by each flow. This characteristic simplifies significantly the
process of assigning service curves for best effort traffic.

2.3 Fair Service Curve Algorithm

To address these problems, we proposed a new service dis-
cipline, called Fair Service Curve (FSC) in [1]. The main
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Figure 4: Measured bandwidth of two TCP sessions, which
startup 2 seconds apart under FSC.

difference between FSC and SCED is that under FSC a flow
that has received excess service is notpunished when other
flows become backlogged. As noted above, this is also what
differentiates PFQ and VC algorithms.3 To illustrate the dif-
ference in fairness between SCED and FSC, consider again
the scenario of two TCP with staggered start times sharing
a 10Mbps link. Figure 4 plots the bandwidth received by
these two sessions under FSC. Contrasted with SCED (Fig-
ure 3), FSC fairly allocates bandwidth to both sessions once
the second session has started up.

Overall, FSC is very similar to PFQ in that it also uses
the concept of virtual time and a set of virtual start and finish
times for each flow. However, the difference between FSC
and PFQ is in the computation of the time stamps. In PFQ,
�i can be viewed as the slope of a straight line service curve.
In FSC, however, since service curves can be non-linear, we
cannot compute the timestamps based on the slope of a ser-
vice curve only. To compute the timestamps, we need to
remember what part of the service curve was used to com-
pute the timestamp of the previous packet. The details of the
virtual time computation and algorithm pseudocode can be
found in [14].

2.4 Fair Service Curve for Best-E�ort Service

The service curve model can easily be extended for best-
effort service when no reservation or admission control is
used. In this case, the absolute values ofm1 andm2 are not
important, as they specify only the relative service priorities
between bursts of size less than� and the continuously back-
logged traffic in the system. We denote the ratiom1=m2
as theBurst Preference Ratio(BPR) and� as thePreferred
Burst Size(PBS).

Since admission control is not necessary for best effort
service, we can assign every flow in the system thesame
service curveS(t), a concave curve similar to the one in
Figure 2(a). The key performance tuning parameters are
the burst preference ratio (BPR)m1=m2, and the preferred
burst size (PBS)�. Intuitively, if a flow has idled for a long
enough period of time, when it becomes backlogged again
its first� bytes are served at a rate proportional tom1. How-
ever, if the flow remains backlogged for more than� bytes,
its remaining bytes are served at a rate proportional tom2,
i.e., BPR times lower thanm1. Thus, if we set� to accom-
modate the most common burst sizes generated by applica-
tions such as WWW, we can provide a significantly lower

3However, note that while both PFQ and VC can provide the same real-time guar-
antees, this is not true for FSC and SCED. A detailed discussion and a variant of FSC
that is able to provide the same real-time guarantees as SCED is given in [1].
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Figure 5: The packet arrival and departure times of a bursty
flow for various service curves.

delay for these applications than it is possible with PFQ.
Note that, unlike PFQ, FSC has “memory” in the sense

that it can differentiate between flows that have previously
idled and flows that are continuously backlogged and treat
them differently. Also, when the system is congested, the
long term rate of a flow, bursty or not, is still bounded by the
fair share rate because in the long run every flow is serviced
at a rate proportional tom2. Thus, while packet delay for
bulk transfer type applications such as FTP may be increased
momentarily, they always receive at least their fair share in
the long run. Finally, it is interesting to note that when BPR
= 1, or when PBS = 0, FSC degenerates to PFQ.

To give some intuition on how FSC behaves, consider a
link shared by 15 constant-bit-rate UDP flows and one ON-
OFF flow with a burst size of 32 packets. Figure 5 plots
the arrival and departure times for each packet belonging to
two consecutive burst periods of the ON-OFF flow. The plot
shows the impact of the preferred burst size (PBS) in packets
on the departure times, and implicitly on the packet queue-
ing delay, which is given by the horizontal distance between
a packet’s arrival time and its departure time. We associate to
all flows the same service curve. In all cases the burst pref-
erence ratio (BPR) is 5. As expected, the delay decreases as
PBS increases. Note that the packet departure times follow
accurately the shape of the service curve associated with the
flows.

3 Simulation Results

We evaluate the FSC algorithm through extensive simula-
tions. All simulations are performed in ns-2 [15]. We ex-
amine the behavior of FSC under a taxonomy of transport
protocol and traffic model combinations. For transport pro-
tocols, we use both TCP (ns-2’s TCP Reno without any pro-
tocol hand-shake) and UDP. For traffic models, we use pe-
riodic ON-OFF source, exponentially distributed ON-OFF
source, pseudo WWW traffic source (a periodic ON-OFF
source feeding into TCP), pseudo video (an ns-2 packet trace
generated from a MPEG-1 video stream), Telnet, FTP and
continuously backlogged UDP source. We have extended
ns-2 to support arbitrary traffic sources on top of TCP, and
to dynamically create and destroy flows.

Different traffic sources have different performance in-
dices. We measure the performance of ON-OFF sources and
Telnet using average burst delay, which is defined as the dif-
ference between the time when the last packet of the burst
arrives at the destination and the time when the first packet

of the burst is sent by the source. For continuously back-
logged sources we use the overall throughput to measure
performance, and for video traffic we use the frame delay
distribution. A potential problem when measuring the burst
delay under UDP is that some packets may be dropped. For
this reason, in the case of UDP sources we report both the
average burst delay and the packet dropping rate.

In all simulations, we distinguish between foreground
flows which are bursty, and background flows which are per-
sistent. Unless otherwise specified, the following parameters
are used in all simulations. The capacity of each link is 10
Mbps with a latency of 10 ms, and the output buffer size
is 128 KB. We use a per-flow buffer management scheme
which drops the second packet from the longest queue when
the buffer overflows [16]. In addition, the size of all packets
is 1000 bytes except for Telnet, which uses 64 byte packets.
The simulation time is 20 seconds.

In this paper, we present only a subset of our simulation
results. Additional simulation results are presented in [14].

3.1 Basic Demonstrations

All simulations presented in this section use periodic ON-
OFF foreground sources with a period of one second and a
peak rate of 4 Mbps. Since the packet size is 1000 bytes, the
inter-packet arrival time is 2 ms. All flows within the same
simulation have the same burst size and the bursts occur at
the beginning of each period. To introduce some random-
ness, the starting times of the flows are drawn from an expo-
nential distribution. Although such a simplistic traffic pat-
tern might not be an accurate simulation of Internet traffic,
it makes it easier to understand and analyze the interactions
between various parameters, such as the preferred burst size
(PBS), the burst preference ratio (BPR), and the percentage
of the background persistent traffic.

3.1.1 Impact of Preferred Burst Size (PBS)

In this section we study the impact of the preferred burst size
(PBS) and the number of background flows on the behavior
of FSC. We consider 16 flows sharing a congested link. The
number of persistent background flows varies from 1 to 8.
Figure 6 and 7 plot the average burst delay as a function
of PBS in four different scenarios using all combinations of
foreground TCP and UDP ON-OFF traffic, and background
FTP and constant bit rate UDP traffic. In the scenarios where
UDP background is used, the aggregate rate of the back-
ground flows is set at twice the link capacity in order to cre-
ate congestion. In all cases the burst size is 16 packets, and
the burst preference ratio (BPR) is 5. As a baseline compari-
son, in each figure we also plot the average burst delay of an
ON-OFF flow that uses an unloaded link.

As can be seen in Figure 6 and 7, in all scenarios the av-
erage burst delay decreases as PBS increases. This is to be
expected since a larger PBS results in a larger percentage of
the burst of each flow being served at a higher priority (ac-
cording the the first slopem1 of their service curves). Note
that the data points for PBS equals zero are the correspond-
ing performance points of PFQ. Clearly, FSC out-performs
PFQ in providing low burst delay.

There are three other points worth noting. First, the aver-
age delay does not decrease after PBS exceeds the burst size
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Figure 6: The average burst delay vs PBS with FTP back-
ground traffic.

of 16 packets. This is because when PBS reaches the burst
size, all packets are already served at the highest priority. We
defer a discussion of the implications of setting the PBS too
large to Section 3.6.

Second, as the number of background flows increases,
the relative amount of improvements in the average burst
delay also increases. This is because the background flows
are continuously backlogged and therefore the deadlines of
their packets are computed based on the second slopem2
of their service curves most of the time. The more back-
ground flows, the higher the relative priority of the bursty
flows as the deadlines of their packets are computed based
on the first slopem1 of their service curves, which is greater
thanm2. Intuitively, as the percentage of background traffic
increases, there are more “opportunities” to shift the delay
from the bursty traffic towards the continuously backlogged
traffic.

Third, the relative amount of improvements in the av-
erage burst delay is larger when the foreground traffic uses
UDP than when it uses TCP. This is because the TCP proto-
col makes use of acknowledgements, which add a fixed over-
head, in terms of round-trip-time, to the burst delay. This is
evident from the “baseline” plots, where only one flow is
backlogged. In our case, it takes roughly three times longer
to send the same burst under TCP than under UDP.

Since the simulation scenarios that employ the same fore-
ground traffic exhibit similar trends, in the remaining of this
section we will limit our study to two scenarios: ON-OFF
TCP foreground with UDP background, and ON-OFF UDP
foreground with UDP background. The reason for choos-
ing UDP over FTP as the background traffic is to factor out
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Figure 7: The average burst delay vs PBS with UDP back-
ground traffic.

the variations due to FTP dynamics. Finally, unless other-
wise specified, we only consider the 8 foreground flows / 8
background flows case.

The next experiment illustrates the impact of the burst
size on the behavior of FSC (Figure 8). Again, the average
burst delay decreases as PBS increases. When the ON-OFF
traffic is TCP (Figure 8(a)), the decrease in the average burst
delay is more significant for larger bursts because when the
burst size is small, the burst delay is dominated by the round-
trip-time as the sender waits for acknowledgements. When
the ON-OFF traffic is UDP, it is interesting to note that for
a burst size of 32 packets, there is little improvement in the
average burst delay between PBS= 0 and PBS= 4 packets
(Figure 8(b)). The reason is that, when PBS= 0, 32.5% of
the packets are dropped, while when PBS= 4 packets, only
15 % of the packets are dropped. Thus, although the average
burst delay does not change between PBS= 0 and PBS= 4
packets, there are actually more packets delivered when PBS
= 4 packets. The percentage of dropped packets reduces to
1.5 % for PBS= 8 packets, and no packet is dropped when
PBS� 16 packets.

3.1.2 Impact of Burst Preference Ratio (BPR)

In this section we study the effects of the Burst Preference
Ratio (BPR) on the behavior of FSC. We consider two sim-
ulation scenarios: UDP foreground with UDP background,
and TCP foreground with UDP background. Foreach ex-
periment we set PBS to be the same as the burst size of the
flows and vary the BPR. As shown in Figure 9, in both cases
the average burst delay decreases as the BPR increases. This
is expected since increasing BPR results in an increase of
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Figure 8: The average burst delay of eight ON-OFF
TCP/UDP flows as a function of PBS for various burst sizes.

the relative priority of the bursty traffic. Also, similar to
the previous experiment (Figure 8), FSC is more effective
for larger burst sizes, especially when the ON-OFF traffic is
TCP. Again, notice that the data points for BPR= 1 are the
corresponding performance points of PFQ under the same
scenarios. The advantage of FSC over PFQ can be seen
clearly.

3.2 Non-homogeneous ON-OFF Sources

Now that we have demonstrated the basic features of FSC,
we begin to consider more complex traffic sources. In this
section, we consider again a congested link shared by eight
ON-OFF flows and eight background UDP flows. How-
ever, unlike the previous experiments in which all flows have
bursts of the same size, in this experiment each flow has a
different burst size. More precisely, the burst size of flowi
is 4� i packets, where1 � i � 8. Our goal is to study how
the average burst delay of each flow is affected by the pre-
ferred burst size (PBS). The results for both TCP and UDP
ON-OFF foreground traffic are shown in Figure 10.

In the first scenario (Figure 10(a)) the average burst delay
of each flow decreases as PBS increases. As expected, the
average burst delay of a flow no longer decreases once PBS
exceeds the flow’s burst size. However, in the second sce-
nario when all flows are UDPs (Figure 10(b)), the average
burst delay for flows with large burst sizes actually increases
initially as PBS increases. This is because more packets are
being transmitted as PBS increases. For example, when PBS
= 0, 33.5% of the packets of flow 8 are being dropped, when
PBS= 8 packets, the dropping rate reduces to 15%. Finally,
for PBS� 16 packets, no packet is dropped.
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Figure 9: The average burst delay vs BPR for eight flows
when the ON-OFF traffic is (a) TCP or (b) UDP.

3.3 Exponential ON-OFF Sources

In this experiment, we consider a more realistic ON-OFF
traffic source whose burst size is exponentially distributed.
Since we intend to model WWW-like traffic, we assume only
TCP ON-OFF foreground traffic. Again we consider eight
foreground and eight background flows sharing the same
link. The mean of the burst size is 16 packets. In order
to obtain more data points we increase the simulation time
to 100 seconds.

Figure 11 shows the average burst delay versus burst size.
In general, the average burst delay improves as PBS increases,
with the improvements being more significant for larger burst
sizes. These results are consistent with the ones presented in
Sections 3.1 and 3.2. The prominent peaks in the delays are
likely caused by TCP timeouts as a result of packet loss.

3.4 Mixed Application Tra�c

In this section we study how effective FSC is in dealing with
a mix of traffic sources. For this we consider a more complex
simulation scenario in which 20 flows share the same link.
Out of these 20, two are MPEG-1 video flows sending at
their fair rate, three are Telnet flows, five are FTP flows, and
the last 10 are background UDP flows. The video flows have
a maximum frame size of 11 packets. The packet size for
all flows is 1000 bytes, except for Telnet which uses 64 byte
packets.

Figure 12(a) shows the average burst delay versus pre-
ferred burst size. For the video flows, we assume that a burst
consists of one frame, while for the Telnet flows, we assume
that a burst consists of one packet. FSC is able to signif-
icantly reduce the average frame delay for the video traf-
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Figure 10: The average burst delay vs PBS for eight flows,
with burst sizes between 4 and 32 packets, when the ON-
OFF traffic is (a) TCP or (b) UDP.
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Figure 11: The average burst delay vs burst size for eight
ON-OFF TCP flows, which have burst sizes exponentially
distributed with a mean of 16 packets.

fic. When PBS exceeds the maximum frame size, we obtain
up to 50% improvement. However, PBS does not affect the
packet delay of the Telnet traffic. This is because the Tel-
net sources are sending at an extremely low rate with very
small packet size compared to the other flows. Therefore
their packets are immediately sent regardless of the value of
PBS. We expect FSC to have a more significant impact on
Telnet when the fair share rate is closer to the Telnet ses-
sion’s rate. Finally, Figure 12(b) shows the distribution of
the frame delay for the video traffic. As expected, the tail of
the distribution decreases as PBS increases.
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Figure 12: (a) The average frame delay for MPEG-1 video
traffic and the average packet delay for Telnet traffic versus
PBS. (b) The frame delay distribution for the video traffic
for different PBS values.

3.5 Impact on Background Tra�c

We have shown that FSC is effective in reducing the aver-
age burst delay of bursty traffic. Could this improvement in
bursty traffic performance negatively affect the background
persistent traffic?

To answer this question, we construct a simulation sce-
nario in which the bursty traffic flows takemaximaladvan-
tage of the benefit provided by FSC and thus put the persis-
tent background traffic in the worst possible position under
FSC. To achieve maximal benefit in FSC, each bursty flow
should send exactly as much data as the PBS, and the bursty
flows should be back-to-back so thateach and every burst
is served at the highest priority (along the first slope) under
FSC.

We use one persistent background TCP flow and a series
of bursty foreground UDP flows,each sending 10 packets of
1000 byteseach. Under FSC, we choose the PBS to be 10
packets and the BPR to be 5. With a 10 Mbps link, this im-
plies that a burst can be served at the maximal rate of 8.33
Mbps under FSC. Therefore, to make the bursty flows back-
to-back under FSC, the inter-flow arrival time needs to be 9.6
ms. Using this traffic arrival pattern, we compare the perfor-
mance of FSC against PFQ (FSC with PBS = 0). Table 1
shows the performance of the bursty flows and the TCP flow
under the two different algorithms.

Under FSC, the throughput of the TCP flow is exactly
as expected (one-sixth of 10 Mbps). What is somewhat sur-
prising is that the TCP throughput is essentially unchanged
under PFQ. This seemingly contradictory result is simple to



Average burst delay TCP throughput
FSC 21.81 ms 1.66 Mbps
PFQ 54.79 ms 1.67 Mbps

Table 1: Comparison of background TCP throughput using
a worst case flow arrival scenario.

explain. Under FSC, only one bursty UDP flow is back-
logged at any given time; in contrast, under PFQ, five bursty
UDP flows are simultaneously backlogged throughout the
simulation (except during the very beginning) because the
bursty flows are no longer served at a special high priority
and they take five times longer to finish. Therefore, with 5
UDP flows and one TCP flow, the TCP flow simply gets its
fair share under PFQ (this is 0.01 Mbps larger because there
are less than 6 backlogged flows during the very beginning
of the simulation). This result shows that even under a worst
case bursty flow arrival scenario, FSC provides virtually the
same performance to a persistent TCP flow as PFQ.

At the same time, FSC is able to bring the average burst
delay of the UDP flows down to 22 ms, of which 10 ms is the
link propagation delay. In other words, the queueing delay
is reduced by almost a factor of 4 compared to PFQ.

3.6 Performance for WWW tra�c

So far, we have shown that FSC can reduce the average delay
of bursty traffic without adversely affecting the background
persistent traffic. The improvements are most pronounced
when the number of background sessions is large and when
the PBS corresponds to the burst size of the sessions in the
foreground. However, they leave the question of how to con-
figure FSC for realistic traffic largely unanswered.

As we increase the preferred burst size (PBS), we in-
crease the percentage of flows and bytes that will be com-
pletely covered by the PBS. The byte-volume of traffic that
is not covered by the PBS determines the amount of back-
ground traffic. As we have shown earlier, the delays of short
bursts are reduced as the amount of background traffic in-
creases. Thus, increasing the PBS will reach a point of di-
minishing return when less traffic exists in the background.
At the limit, if we set the PBS to be greater than or equal
to the length of the longest flow, all data will be serviced
along the first slope of the service curve and FSC will again
be equivalent to PFQ. An analogous problem exists for the
BPR. As in the limit, if we set the BPR very large, back-
ground traffic could see no service while bursts are being
served. Thus, to maximize the benefit of FSC, we would like
to choose a PBS that encompasses a relatively large percent-
age of the flows while covering a relatively small percentage
of the byte volume and choose a BPR that can significantly
reduce the delays of these bursts without adversely affecting
background traffic.

In order to answer these questions, we use the flow length
data from AT&T Labs’ recent Internet traffic analysis [17].
Figure 13 shows the probability that a host-level flow has up
to x bytes, and the contribution of these flows to the cumu-
lative byte count. For example, while60% of the host-level
flows are less than5000 bytes in length, these flows consti-
tutes approximately only7% of the byte volume of the trace.
For this traffic distribution, choosing a PBS ofx bytes will
completely cover all the flows up tox bytes in length, and
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Figure 13: Cumulative probability distribution of flow
lengths and their portion of the total byte volume.

their corresponding byte volume. The actual coverage will
be larger than this, as longer lived flows that consist of pe-
riodic short bursts may transmit at a low enough sustained
rate so that their entire transmission is transmitted along the
first slope.

To determine how to configure FSC’s parameters for WWW
traffic, we generate a synthetic workload of FTP traffic, whose
flow lengths are chosen to model this distribution. We di-
vide the flows into 10 groups,each representing 10 % of
the flows, and compute the average flow length within each
group. Based on the average flow length of13; 666 bytes,
we generate a synthetic workload of FTP traffic via a Pois-
son process with a mean flow arrival rate corresponding to
95% of the link capacity and select among the10 groups
uniformly to determine the flow length. We run these simu-
lations for 1 minute of simulation time over a10 Mbps link
with a2ms latency while setting the maximum segment size
of the TCP sources to576 bytes. Figure 14 plots the average
transfer time experienced by flows in groups8 and10, as we
vary the BPR from 1 to 10 and the PBS from 0 KB to 100
KB.

Note that all points with PBS = 0 and/or BPR = 1 cor-
respond to PFQ. Groups0 through3 are sufficiently small
and short lived that PFQ and FSC have roughly equivalent
performance, while groups4 through6 have analogous im-
provements to those shown here. While our earlier results
have shown minimal impact on background traffic, Figure 14
(b) shows that Group10 in fact sees a noticeable impact with
large PBS settings. The reason is that the buffer resources in
this system, while shared, are finite. In this study, when the
buffer resources are depleted, a packet is pushed out from the
longest queue [18]. Thus, the longest flows (Group 10) will
incur the losses when the link becomes congested. As our
measurements include all packets required to complete the
FTP transfer, this explains the impact. Because this practical
constraint cannot be avoided in actual systems, this encour-
ages us to configure the system with conservative settings.

While a flow’s delay is minimal when its length corre-
sponds to the PBS, minimal additional improvements are
seen with BPR greater than 4. For this simulation set, set-
ting BPR = 4 and PBS = 6000 bytes reduces transfer times
of most groups (some by over50%) while only increasing
the transfer time of the largest group by1%.
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Figure 14: (a) Transfer time for 70 to 80th percentile flows.
(b) Transfer time for 90 to 100th percentile flows.

4 Summary

In this paper we study the Fair Service Curve (FSC) algo-
rithm in the context of supporting best-effort service. We
show that FSC can significantly improve the delay of bursty
traffic compared to PFQ without negatively affecting the through-
put of long-lived traffic. As a general trend, the average burst
delay decreases as:

1. the Preferred Burst Size (PBS) increases. This is be-
cause the portion of the burst which is served accord-
ing to the first slope of the service curve increases.

2. the Burst Preference Ratio (BPR) increases. This is
because the relative priority of the packets served ac-
cording to the first slope of the service curve increases.

3. the number of background continuously backlogged
traffic flows increases. Intuitively, more background
traffic provides more “opportunities” to shift the delay
from the bursty traffic towards the background traffic.

To determine practical settings for FSC for best-effort
traffic, we generated a synthetic workload of WWW traf-
fic. This exposed the limitations of setting the PBS and BPR
too large for a given traffic pattern. For this set of web traf-
fic traces, setting BPR = 4 and PBS = 6000 bytes provides
a significant reduction in the transfer time of the majority of
flows without noticeable impact on the background traffic.

Compared to PFQ, the added complexity to implement
FSC is minimal. We believe FSC is a powerful solution that
offers better support for best effort traffic in today’s Internet.
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