
Ph.D. Comprehensive Exam:
Math and Algorithms

Fall 2002

The exam includes eight problems;
the length of the exam is three hours.

0



Problem 1

The double factorial, n!!, is defined by the following recurrence:

0!! = 1!! = 1;
for n ≥ 2, n!! = n · (n − 2)!!.

For example, 6!! = 2 · 4 · 6 = 48, and 7!! = 1 · 3 · 5 · 7 = 105.
Prove or disprove the following asymptotic bound:

n!! = o((n + 1)!!).

1



Problem 2

Determine asymptotically tight bounds (Θ-notation) for the following recurrences, and show
the derivation of your bounds:

(a) T (n) = 3 · T (n/2) + 4 · T (n/4) + n2.

(b) T (n) =
√

n · T (
√

n) + n.

2



Problem 3

Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[j], the pair (i, j) is called
an inversion. For example, the array 〈2, 3, 8, 6, 1〉 has five inversions. Give an algorithm that
determines the number of inversions in A[1..n]; its running time must be O(n · lg n).

3



Problem 4

Give a linear-time algorithm that converts a sorted array A[1..n] into a balanced binary
search tree. That is, the algorithm should input A[1..n] and construct an n-node balanced
tree that includes all elements of the array.

4



Problem 5

Give a linear-time nonrecursive algorithm that outputs all elements of a binary search tree
in sorted order.

5



Problem 6

Suppose that we augment a normal programming language with an additional “magic”
function, Magic-Max(A, i, j). The arguments of this function include an array A[1..n]
and two indices, i and j, such that 1 ≤ i ≤ j ≤ n. The function sometimes returns the
index of the largest element in A[i..j], and sometimes the index of the second largest element
in A[i..j]; its choice between the largest and second largest element is random. The magic
property of this function is its speed; specifically, it returns an answer in constant time. Your
task is to use this language to develop a procedure that sorts an array of real values in linear
time. It must always return the correct sorting, and its worst-case time must be linear.

6



Problem 7

Suppose that S is a finite set of natural numbers, and we need to determine whether there
is a subset S ′ of S whose elements sum to 2002. That is, we have to construct an algorithm
that inputs S, and returns true if there exists S ′ ⊆ S such that

∑
x∈S′ x = 2002. Determine

whether this problem is np-hard and justify your answer.

7



Problem 8

We define the length of a path in an unweighted graph as the number of edges in the
path. We consider the task of finding a longest simple path between two given vertices in
an undirected unweighted graph; recall that a path is simple if it has no self-intersections.
Determine whether this problem is np-hard and justify your answer.

8


