Automata Theory: Solutions 8

										X X X X X X X
										X X X X X
										X X X X X
										X X X X X
number of									X X	X X X X X
				v			V	X X X X	X X X X X	X X X X X
	X 		X 	Х Х 	X 	X 	X X 	X X 	X X 	X X
	1	2	3	4	5 gra	6 des	7	8	9	10

Consider the following grammar:

$$\begin{split} S &\rightarrow aSa \mid A \mid C \\ A &\rightarrow bBb \mid bCb \mid E \\ B &\rightarrow bBb \mid \lambda \\ C &\rightarrow aC \mid bC \\ D &\rightarrow aD \mid \lambda \\ E &\rightarrow bb \mid bEb \end{split}$$

Problem 1

Simplify this grammar: remove all useless variables, λ -productions, and unit-productions.

The simplification gives the following result:

$$S \rightarrow aSa \mid bb \mid bBb \mid bEb$$

$$B \rightarrow bb \mid bBb$$

$$E \rightarrow bb \mid bEb$$

Since B and E give rise to the same strings, we may remove either of them:

$$S \rightarrow aSa \mid bb \mid bBb$$
$$B \rightarrow bb \mid bBb$$

This grammar generates the language $\{a^nb^{2m}a^n: n \geq 0, m \geq 1\}$.

Problem 2

Give an equivalent grammar in Chomsky normal form.

$$S \to XC \mid YY \mid YD$$

$$C \to SX$$

$$D \to BY$$

$$X \to a$$

$$Y \to b$$

Problem 3

Give an equivalent grammar in Greibach normal form.

$$S \rightarrow aSX \mid bY \mid bBY$$

$$B \rightarrow bY \mid bBY$$

$$X \rightarrow a$$

$$Y \rightarrow b$$