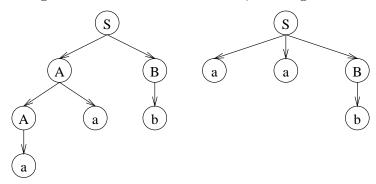
Automata Theory: Solutions 7

								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
								X
number of X						X		X
homeworl				X		X		
						X		X
						X		X
						X		X
						X		X
						X		X
						X		X
						X		X
						X		X
						X	X	X
		X		X		X	X	X
X		X		X	X	X	X	X
2	3	4	5 g	 6 rad	7 es	8	9	10


Problem 1

Consider the following grammar:

$$\begin{array}{c} S \rightarrow AB \mid aaB \\ A \rightarrow a \mid Aa \\ B \rightarrow b \end{array}$$

(a) Show that this grammar is ambiguous.

We may derive aab using either $S \to AB$ or $S \to aaB$, which give rise to different trees:

(b) Give a regular expression that describes the same language.

The language comprises all words that consist of one or more a's followed by exactly one b; thus, the corresponding regular expression is a^+b .

(c) Construct an unambiguous grammar that describes the same language.

We can remove the production $S \to aaB$ to eliminate the ambiguity, which leads to the following grammar:

$$S \to AB$$

$$A \to a \mid Aa$$

$$B \to b$$

We can further simplify this grammar, by eliminating the variables A and B:

$$S \to aS \mid ab$$

Problem 2

For each of the following two grammars, construct an equivalent grammar that has no λ -productions and no unit-productions.

2

(a)
$$S \rightarrow A \mid B$$

 $A \rightarrow a \mid aA$
 $B \rightarrow b \mid bB$

Simplified grammar:

$$S \to a \mid aA \mid b \mid bB$$
$$A \to a \mid aA$$
$$B \to b \mid bB$$

(b)
$$S \rightarrow aAb \mid bAa \mid aSb \mid bSa$$

 $A \rightarrow aAa \mid \lambda$

Simplified grammar:

$$S \rightarrow aAb \mid bAa \mid aSb \mid bSa \mid ab \mid ba$$
$$A \rightarrow aAa \mid aa$$