Automata Theory: Solutions 5

				Х							
				X							
number of			X	X							
homeworks			X	X	X						
			X	X	X						
	X		X	X	X		X				
	X		X	X	X		X	X			
	X		X	X	X		X	X			
	X		X	X	X	X	X	X		X	
	X		X	X	X	X	X	X		X	
	X	X	X	X	X	X	X	X		X	
	X	X	X	X	X	X	X	X	X	X	
	 1	2		4	 5	 6	 7	 8	 9	10	
		grades									

Problem 1

Demonstrate that, if L_1 is a regular language on the alphabet $\Sigma = \{a, b\}$, then the following subset of L_1 is also a regular language:

 $L_2 = \{w : w \in L_1 \text{ and the length of } w \text{ is even}\}.$

Consider the language L_3 defined by the expression $((a+b)(a+b))^*$. Note that, since we describe L_3 by a regular expression, it is a regular language. This language includes all even-length strings on the alphabet $\{a,b\}$, and we may express L_2 as follows:

$$L_2 = L_1 \cap L_3$$
.

Thus, L_2 is the intersection of two regular languages, which implies that it is also regular.

Problem 2

Describe a method for determining whether $L_1 \subseteq L_2$, for given regular languages L_1 and L_2 .

The key observation is that $L_1 \subseteq L_2$ if and only if $L_1 \cap \overline{L_2} = \emptyset$. Given DFAs for L_1 and L_2 , we can construct a DFA for $L_1 \cap \overline{L_2}$ and check whether the corresponding language is empty.

If the resulting automaton does *not* accept any strings, then $L_1 \cap \overline{L_2}$ is empty, which means that $L_1 \subseteq L_2$. If the automaton accepts some strings, then L_1 is *not* a subset of L_2 .

Problem 3

Argue that the language $\{a^nb^{2n}: n \geq 0\}$ is not regular.

We suppose that the language is regular and derive a contradiction. If this language is regular, there is some m-state DFA that accepts it, where m is an unknown fixed number.

Suppose that we begin from the initial state of the DFA and trace a path for each of the following strings: $a^0, a^1, a^2, ..., a^m$. Since the total number of these strings is m + 1, two of them must lead to the same state; we denote these two strings a^i and a^j (see the picture).

Since the automaton accepts the string a^ib^{2i} , this string must lead from the initial state to a final state, as shown in the picture. Then, the string a^jb^{2i} leads to the same final state, contradicting the fact that a^jb^{2i} is not in the language.

