Automata Theory: Solutions 3

									X
									X
									Х
									Х
									X
									X
									X
									X
									X
									X
number of									X
homeworks				X					X
				X					X
			X	X	X		X		X
	X	X	X	X	X		X	X	X
	X	X	X	X	X		X	X	X
Х	X	X	X	X	X		X	X	X
X	X	X	X	X	X		X	X	X
X	X	X	X	X	X	X	X	X	X
1	2	3	4	 5	 6	 7	 8	9	10
	grades								

Problem 1

For each of the following three languages on $\Sigma = \{a, b\}$, draw a deterministic finite automaton that accepts it:

- (a) All strings that have no b's (note that it includes λ).
- (b) All strings with at least two a's, and any number of b's.
- (c) All strings with at most three a's, and any number of b's.

Problem 2

Give regular expressions for the same three languages.

- (a) All strings that have no b's (note that it includes λ). $\mathbf{r} = \mathbf{a}^*$
- (b) All strings with at least two a's, and any number of b's. $\mathbf{r} = \mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} (\mathbf{a} + \mathbf{b})^*$
- (c) All strings with at most three a's, and any number of b's. $\mathbf{r} = \mathbf{b}^* + \mathbf{b}^* \mathbf{a} \mathbf{b}^* + \mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} \mathbf{b}^* + \mathbf{b}^* \mathbf{a} \mathbf{b}^* \mathbf{a} \mathbf{b}^*$

Problem 3

For the alphabet $\Sigma = \{a, b\}$, draw a deterministic finite accepter that is equivalent to the following nondeterministic accepter:

Answer:

