Automata Theory: Solutions 2

						X			
						X			
	X			X		X		Х	
number of	X		X	X		X		Х	
homeworks	X	X	X	X		X	X	Х	
	X	X	X	X		X	X	Х	Х
	X	X	X	X	X	X	X	Х	Х
X	X	X	X	X	X	X	X	X	Х
X	X	X	X	X	X	X	X	Х	Х
Х	X	X	X	X	Х	X	Х	Х	Х

0.5-1 1.5-2 2.5-3 3.5-4 4.5-5 5.5-6 6.5-7 7.5-8 8.5-9 9.5-10 grades

This histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1

Prove the following equality by induction:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
.

Basis: If n = 1, then the equality trivially holds: $1^3 = (1)^2$.

Step: Suppose that $1^3 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2$ is true. Then, we may prove the equality for n + 1 as follows:

$$1^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+3+\dots+n)^{2} + (n+1)^{3}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$

$$= \left(\frac{n^{2}+n}{2}\right)^{2} + n^{3} + 3n^{2} + 3n + 1$$

$$= \frac{n^{4} + 2n^{3} + n^{2}}{4} + \frac{4n^{3} + 12n^{2} + 12n + 4}{4}$$

$$= \frac{n^{4} + 6n^{3} + 13n^{2} + 12n + 4}{4}$$

$$= \left(\frac{n^{2} + 3n + 2}{2}\right)^{2}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^{2}$$

$$= (1+2+3+\dots+n+(n+1))^{2}$$

Problem 2

Consider the following two languages on the alphabet $\Sigma = \{a, b\}$:

$$L_1 = \{a^n : n \ge 1\}$$

$$L_2 = \{b^n : n \ge 1\}$$

Describe the languages below, using either the set notation or precise definitions in English:

- $L_3 = L_1^* = L_1^{\ 0} \cup L_1^{\ 1} \cup L_1^{\ 2} \cup \ldots = \{a^n: \ n \geq 0\}$ (all strings that have no b's)
- $L_4 = \overline{L_1} = \{\lambda\} \cup \{w : w \text{ includes at least one } b\}$ (the empty string and all strings that have some b's)
- $L_5 = L_1 \cup L_2 = \{a^n, b^n : n \ge 1\}$ (all strings that have only a's or only b's)
- $L_6 = L_1 L_2 = \{a^m b^n : m \ge 1, n \ge 1\}$
- $L_7 = (L_1^2)(L_2^2)(L_1^2) = \{a^m b^n a^k : m, n, k \ge 2\}$
- $L_8 = (L_1 \cup L_2)^* = \Sigma^*$ (all strings on the alphabet)
- $L_9 = (L_1L_2)^* = \{awb : w \text{ is any string on } \Sigma\}$ (all strings that begin with a and end with b)

Problem 3

Consider the alphabet $\Sigma = \{a, b\}$. Is there any language L on this alphabet for which $(\overline{L})^* = \overline{L^*}$? If yes, give an example of such a language; if no, explain why.

By definition, the star-closure of any language includes the empty string λ . In particular, the $(\overline{L})^*$ language, which is the star-closure of \overline{L} , includes λ . On the other hand, since L^* includes λ , we conclude that its complement, $\overline{L^*}$, does *not* include λ .

Thus, for every language L, the empty string is included into $(\overline{L})^*$, and it is not included into $\overline{L^*}$; hence, $(\overline{L})^* \neq (\overline{L})^*$.