Automata Theory: Solutions 1

					X
					X
					X
					X
					Х
					X
					Х
					Х
					Х
					X
					X
					X
					X
					X
number of					Х
homeworks			Х		Х
			Х	Х	X
			Х	Х	X
			Х	Х	Х
			Х	Х	Х
		X	Х	Х	Х
		X	Х	Х	Х
		X	Х	Х	X
		X	Х	Х	Х
		X	Х	Х	Х
		X	Х	Х	Х
		X	Х	Х	X
X	Х	X	Х	Х	X
X	Х	X	Х	Х	X
2.5-3 3.5-4 4.5	-5 5.5-6	6.5-7	7.5-8	8.5-9	9.5-10
grades					

This histogram shows the distribution of grades (from 0 to 10) for the homeworks submitted on time; it does not include the late submissions.

Problem 1

Consider the following sets of integer numbers:

$$S_1 = \{4, 5, 6\}$$

 $S_2 = \{i : i \text{ is even}\}$
 $S_3 = \{i : i \text{ is divisible by 3}\}$

For each set below, specify its elements and determine whether it is finite or infinite:

$$\begin{split} S_4 &= S_1 \times S_1 = \{(4,4),(4,5),(4,6),(5,4),(5,5),(5,6),(6,4),(6,5),(6,6)\} \\ S_5 &= 2^{S_1} = \{\emptyset,\{4\},\{5\},\{6\},\{4,5\},\{4,6\},\{5,6\},\{4,5,6\}\} \} \\ S_6 &= S_1 \cap S_2 = \{4,6\} \\ S_7 &= S_2 \cap S_3 = \{i:\ i \text{ is divisible by } 6\} \end{split}$$

The sets S_4 , S_5 , and S_6 are finite, whereas S_7 is infinite.

Problem 2

Show that, if $S_1 \subseteq S_2$, then $\overline{S_2} \subseteq \overline{S_1}$.

By the definition of subsets, we need to show that every element x of $\overline{S_2}$ is also an element of $\overline{S_1}$. The proof is as follows:

$$x \in \overline{S_2} \implies x \notin S_2$$
 (by definition of $\overline{S_2}$)
 $\Rightarrow x \notin S_1$ (because $S_1 \subseteq S_2$)
 $\Rightarrow x \in \overline{S_1}$ (by definition of $\overline{S_1}$)

Problem 3

(a) Draw an example of a graph that has six vertices and six edges. Mark all simple cycles in your graph.

This graph has one simple cycle; other examples may have a different number of cycles.

(b) Draw an example of a tree that has seven vertices, five of which are leaves. How many edges are in your tree?

A tree with n vertices always has n-1 edges; in particular, a seven-vertex tree has six edges.