Automata Theory: Solutions 7

									X	
									X	
									X	
									X	
numbe	r	of							X	X
homeworks								X	X	
									X	X
								X	X	X
								X	X	X
			X		X			X	X	X
			X	X	X		X	X	X	X
	X		X	X	X	X	X	X	X	X
	1	2	3	4	- 	- - -	 7	- 	9	10
grades										

Problem 1

Argue that the language $\{a^nb^ka^n: k, n \geq 0\}$ is not regular.

We suppose that the language is regular and derive a contradiction. If it is regular, there is some m-state DFA that accepts it, where m is an unknown fixed number. Suppose that we begin from the initial state of the DFA and trace the path for each of the following strings: $a^0, a^1, a^2, ..., a^m$. Since the number of strings is m + 1, two of them must lead to the same state; we denote these two strings a^i and a^j (see the picture). Since the automaton accepts a^iba^i , this string leads from the initial state to a final state, as shown in the picture. Then, a^jba^i leads to the same final state, contradicting the fact that a^jba^i is not in the language.

1

Problem 2

Give a context-free grammar for each of the following languages:

- (a) $\{a^n b^k a^n : k, n \ge 0\}$
- (b) $\{a^k b^m a^n : m = 2 \cdot k + 2 \cdot n\}$
- (c) $\{a^k b^m a^n : k+m \ge n\}$
- (a) $S \to aSa \mid A$ $A \to bA \mid \lambda$
- (b) $S \to AB$ $A \to aAbb \mid \lambda$ $B \to bbBa \mid \lambda$
- (c) $S \rightarrow aSa \mid aS \mid A$ $A \rightarrow bAa \mid bA \mid \lambda$