Automata Theory: Solutions 6

							X
					X		X
number	of				X		X
homewor			X	X		X	
				X	X		X
		Х		X	X		X
		X	Х	X	X		X
	X	Х	X	Х	X		X
	Х	X	Х	X	X		X
	Х	Х	X	Х	Х		X
	4	5	6	7	8	9	10
	grades						
•							

Problem 1

Show that, if L_1 is a regular language on $\Sigma = \{a, b\}$, the following language is also regular:

 $L_2 = \{w : w \in L_1 \text{ and the length of } w \text{ is odd}\}.$

Consider the language L_3 defined as $((a + b) \cdot (a + b))^*$; since we describe L_3 by a regular expression, it is a regular language. This language includes all strings of even length, and we can express L_2 as follows:

$$L_2 = L_1 - L_3$$
.

Thus, L_2 is the difference of two regular languages, which implies that it is also regular.

Problem 2

Describe a method for determining whether a given regular language L includes any string w such that w^R is also in L.

The key observation is that L includes such a string if and only if $L \cap L^R$ is nonempty. Given DFAs for L_1 and L_2 , we can construct a DFA for $L \cap L^R$ and check whether the corresponding language is empty. If the resulting automaton does not accept any strings, then $L \cap L^R$ is empty, which means that L does not include any string whose reverse is also in L. If the automaton accepts some strings, then L includes some string w such that w is in L.