Automata Theory: Solutions 3

								X
					Х			Х
				X	X			X
				X	X	X		X
				X	X	X	X	X
numbe	er	of		X	X	X	X	X
homev	ks		X	X	X	X	X	
				X	X	X	X	X
		Х		X	X	X	X	X
	X	X	X	X	X	X	X	X
	2	3	4	5	6	7	8	9
	grades							

The histogram shows the distribution of grades.

Problem 1

Consider two languages on the alphabet $\Sigma = \{a, b\}$:

$$L_1 = \{a^n : n \ge 1\}$$

$$L_2 = \{ab^n : n \ge 0\}$$

Describe the following languages:

- $L_3 = L_1^* = \{a^n : n \ge 0\}$ (the empty string and all strings that have no b's)
- $\begin{array}{l} \bullet \ L_4 = L_1^+ = \{a^n: \ n \geq 1\} \\ \qquad \text{(all nonempty strings that have no b's)} \end{array}$
- $L_5 = \overline{L_1} = \{\lambda\} \cup \{w: w \text{ includes at least one } b\}$ (the empty string and all strings that have at least one b)
- $L_6 = L_2^* = \{\lambda\} \cup \{aw : w \text{ is any string on } \Sigma\}$ (the empty string and all strings that begin with a)
- $L_7 = L_1 \cap L_2 = \{a\}$
- $L_8 = L_1 L_2 = \{a^m b^n : m \ge 2 \text{ and } n \ge 0\}$

Problem 2

Is there a language L on the alphabet $\Sigma = \{a, b\}$ for which $(\overline{L})^+ = \overline{L^+}$?

We consider the "empty" language, $L = \emptyset$, and show that it satisfies the equality. The complement and positive closure of the empty language are as follows:

$$\overline{L} = \Sigma^*
(\overline{L})^+ = \Sigma^*
\underline{L}^+ = \Sigma^*$$

We thus conclude that $(\overline{L})^+ = \overline{L^+} = \Sigma^*$.