Automata Theory: Solutions 2

								Х	
								X	
								X	
								X	
								X	
								X	
								X	
								X	
						X		X	
nι	umb	er	of			X		X	
h	ome	woi	cks			X	X	X	
						X	X	X	
						X	X	X	
						X	X	X	
						X	X	X	
						X	X	X	Х
		X			X	X	X	X	Х
	X	X			X	X	X	X	X
	2	3	4	 5	6	7	 8	 9	 10
				g	rad	es			

The histogram shows the distribution of grades.

Problem 1

Consider the following sets of integer numbers:

$$S_1 = \{1, 2, 3\}$$

 $S_2 = \{i : i \text{ is odd}\}$
 $S_3 = \{i : i \text{ is divisible by 3}\}$

For each set below, specify its elements:

$$S_4 = 2^{S_1} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\}$$

$$S_5 = 2^{S_1} \cap 2^{S_2} = \{\emptyset, \{1\}, \{3\}, \{1, 3\}\}\}$$

$$S_6 = S_3 - S_2 = \{i : i \text{ is divisible by 6}\}$$

The sets S_4 and S_5 are finite, whereas S_6 is infinite.

Problem 2

Prove that, if $S_1 \subseteq S_2$, then $2^{S_1} \subseteq 2^{S_2}$.

By the definition of subsets, we need to show that every element s of 2^{S_1} is also an element of 2^{S_2} . The proof is as follows:

$$s \in 2^{S_1} \Leftrightarrow s \subseteq S_1$$
 (by definition of powerset)
 $\Rightarrow s \subseteq S_2$ (because $S_1 \subseteq S_2$)
 $\Leftrightarrow s \in 2^{S_2}$ (by definition of powerset)

Problem 3

Prove the following equality by induction:

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6}.$$

Clearly, it holds for n = 1; we now show that, if it holds for n, then it also holds for n + 1:

$$1^{2} + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6} + (n+1)^{2}$$

$$= \frac{n \cdot (n+1) \cdot (2 \cdot n+1)}{6} + \frac{6 \cdot (n+1)^{2}}{6}$$

$$= \frac{(n+1)}{6} \cdot (n \cdot (2 \cdot n+1) + 6 \cdot (n+1))$$

$$= \frac{(n+1)}{6} \cdot (2 \cdot n^{2} + 7 \cdot n + 6)$$

$$= \frac{(n+1)}{6} \cdot (n+2)(2 \cdot n + 3)$$

$$= \frac{(n+1) \cdot ((n+1) + 1) \cdot (2 \cdot (n+1) + 1)}{6}$$