Automata Theory: Solutions 6 | | | X | | | | | |---|------------------|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------| | | | Х | | | | | | | | Х | | | | | | | | Х | | | | | | | | X | | | | | | | | X | | | | | | | | X | | | | | | f | | X | | | | | | s | | X | | | | | | | | X | | | | Х | | X | | X | | | | X | | X | | X | | | | X | | X | | X | | | | Х | | X | Х | X | | | | Х | | X | X | X | | | | X | | X | X | X | X | | X | X | | 4 |
5 | |
7 |
8 |
9 |
10 | | | | | | | | | | | X
X
X
X | x
x
x
x
x
x x
x x
x x
x x
4 5 | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | X X X X X X X X X X X X X X X X X X X | ## Problem 1 Demonstrate that, if L_1 is a regular language on the alphabet $\Sigma = \{a, b\}$, then the following subset of L_1 is also a regular language: $L_2 = \{w : w \in L_1 \text{ and } w \text{ includes at least one } b\}.$ Consider the language L_3 defined by the expression a^* ; since we describe L_3 by a regular expression, it is a regular language. This language includes all strings that have no b, and we can express L_2 as follows: $$L_2 = L_1 - L_3.$$ Thus, L_2 is the difference of two regular languages, which implies that it is also regular. ## Problem 2 Argue that the language $\{a^nb^{2n}: n \geq 0\}$ is not regular. We suppose that the language is regular and derive a contradiction. If this language is regular, there is some m-state DFA that accepts it, where m is an unknown fixed number. Suppose that we begin from the initial state of the DFA and trace the path for each of the following strings: $a^0, a^1, a^2, ..., a^m$. Since the total number of these strings is m + 1, two of them must lead to the same state; we denote these two strings a^i and a^j (see the picture). Since the automaton accepts the string a^ib^{2i} , this string must lead from the initial state to a final state, as shown in the picture. Then, the string a^jb^{2i} leads to the same final state, contradicting the fact that a^jb^{2i} is not in the language.