Automata Theory: Solutions 3

The histogram shows the distribution of grades, from 0 to 10.

Problem 1

Consider the following two languages on the alphabet $\Sigma = \{a, b\}$:

$$L_1 = \{a^n : n \ge 1\}$$

$$L_2 = \{b^n : n > 1\}$$

Describe the following languages:

- $L_3 = L_1^* = L_1^{\ 0} \cup L_1^{\ 1} \cup L_1^{\ 2} \cup \ldots = \{a^n: \ n \ge 0\}$ (all strings that have no b's)
- $L_4 = \overline{L_1} = \{\lambda\} \cup \{w: w \text{ includes at least one } b\}$ (the empty string and all strings that have some b's)
- $L_5 = L_1 \cup L_2 = \{a^n, b^n : n \ge 1\}$ (all strings that have only a's or only b's)
- $L_6 = L_1L_2 = \{a^mb^n: m \ge 1, n \ge 1\}$
- $L_7 = (L_1^2)(L_2^2)(L_1^2) = \{a^m b^n a^k : m, n, k \ge 2\}$
- $L_8 = (L_1 \cup L_2)^* = \Sigma^*$ (all strings on the alphabet)
- $L_9 = (L_1L_2)^* = \{awb : w \text{ is any string on } \Sigma\}$ (all strings that begin with a and end with b)

Problem 2

Consider the alphabet $\Sigma = \{a, b\}$. Is there any language L on this alphabet for which $(\overline{L})^* = \overline{L^*}$? If yes, give an example of such a language; if no, explain why.

By definition, the star-closure of any language includes the empty string λ . In particular, the $(\overline{L})^*$ language, which is the star-closure of \overline{L} , includes λ . On the other hand, since L^* includes λ , we conclude that its complement, $\overline{L^*}$, does *not* include λ . Thus, the empty string is included into $(\overline{L})^*$, and it is not included into $\overline{L^*}$, which implies that $(\overline{L})^* \neq \overline{L^*}$.