Automata Theory: Solutions 2

						X	
						X	
						X	
						X	
						X	
						X	
						X	
						X	
number of						X	
homeworks						X	
						X	
				X		X	
		X		X		X	
		X		X	X	X	
		X	X	X	X	X	
	X	X	X	X	X	X	
	X	X	X	X	X	X	
	 5	6	 7	 8		 10	
		grades					

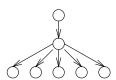
The histogram shows the distribution of grades, from 0 to 10.

Problem 1

(a) Draw a graph with six vertices and six edges, and mark all simple cycles.

This graph has one simple cycle; other examples may have a different number of cycles.

(b) Draw a tree with seven vertices, five of which are leaves. How many edges are in your tree?



A tree with n vertices always has n-1 edges; in particular, a seven-vertex tree has six edges.

Problem 2

Prove the following equality by induction:

$$1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$$
.

Basis: If n = 1, then the equality trivially holds: $1^3 = (1)^2$.

Step: Suppose that $1^3 + 2^3 + 3^3 + \cdots + n^3 = (1 + 2 + 3 + \cdots + n)^2$ is true. Then, we may prove the equality for n + 1 as follows:

$$1^{3} + \dots + n^{3} + (n+1)^{3} = (1+2+3+\dots+n)^{2} + (n+1)^{3}$$

$$= \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$

$$= \left(\frac{n^{2}+n}{2}\right)^{2} + n^{3} + 3n^{2} + 3n + 1$$

$$= \frac{n^{4} + 2n^{3} + n^{2}}{4} + \frac{4n^{3} + 12n^{2} + 12n + 4}{4}$$

$$= \frac{n^{4} + 6n^{3} + 13n^{2} + 12n + 4}{4}$$

$$= \left(\frac{n^{2} + 3n + 2}{2}\right)^{2}$$

$$= \left(\frac{(n+1)(n+2)}{2}\right)^{2}$$

$$= (1+2+3+\dots+n+(n+1))^{2}$$