## **Automata Theory: Solutions 1**

The histogram shows the distribution of grades, from 0 to 10.

## Problem 1

Consider the following sets of integer numbers:

$$S_1 = \{4, 5, 6\}$$
  
 $S_2 = \{i : i \text{ is even}\}$   
 $S_3 = \{i : i \text{ is divisible by 3}\}$ 

For each set below, specify its elements and determine whether it is finite or infinite:

$$S_4 = S_1 \times S_1 = \{(4,4), (4,5), (4,6), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6)\}$$

$$S_5 = 2^{S_1} = \{\emptyset, \{4\}, \{5\}, \{6\}, \{4,5\}, \{4,6\}, \{5,6\}, \{4,5,6\}\}\}$$

$$S_6 = S_1 \cap S_2 = \{4,6\}$$

$$S_7 = S_2 \cap S_3 = \{i: i \text{ is divisible by } 6\}$$

The sets  $S_4$ ,  $S_5$ , and  $S_6$  are finite, whereas  $S_7$  is infinite.

## Problem 2

Prove that, if  $S_1 \subseteq S_2$ , then  $\overline{S_2} \subseteq \overline{S_1}$ .

By the definition of subsets, we need to show that every element x of  $\overline{S_2}$  is also an element of  $\overline{S_1}$ . The proof is as follows:

$$x \in \overline{S_2} \implies x \notin S_2$$
 (by definition of  $\overline{S_2}$ )  
 $\Rightarrow x \notin S_1$  (because  $S_1 \subseteq S_2$ )  
 $\Rightarrow x \in \overline{S_1}$  (by definition of  $\overline{S_1}$ )

## Problem 3

(a) 
$$1+2+3+4+...+n=\frac{n\cdot(n+1)}{2}$$
.

We use a proof by induction. Clearly, the equality holds for n = 1; we now show that, if it holds for n, then it also holds for n + 1:

$$1 + 2 + \dots + n + (n + 1) = (1 + 2 + \dots + n) + (n + 1)$$

$$= \frac{n \cdot (n + 1)}{2} + (n + 1)$$

$$= \frac{n \cdot (n + 1) + 2 \cdot (n + 1)}{2}$$

$$= \frac{(n + 2) \cdot (n + 1)}{2}$$

$$= \frac{(n + 1) \cdot ((n + 1) + 1)}{2}$$

**(b)** 
$$1 + x + x^2 + x^3 + \dots + x^n = \frac{x^{n+1}-1}{x-1}$$
 (where  $x \neq 1$ ).

We observe that the equality holds for n = 1, and apply induction to "step" from n to n + 1:

$$1 + x + \dots + x^{n} + x^{n+1} = \frac{x^{n+1} - 1}{x - 1} + x^{n+1}$$

$$= \frac{x^{n+1} - 1 + x^{n+1} \cdot (x - 1)}{x - 1}$$

$$= \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1}$$

$$= \frac{x^{(n+1)+1} - 1}{x - 1}$$