Automata Theory: Assignment 1

Due date: August 30 (Thursday)

Problem 1 (4 points)

Consider the following sets of integer numbers:

$$S_1 = \{4, 5, 6\}$$

$$S_2 = \{i : i \text{ is even}\}$$

$$S_2 = \{i: i \text{ is even}\}$$

 $S_3 = \{i: i \text{ is divisible by 3}\}$

For each set below, specify its elements and determine whether it is finite or infinite:

$$S_4 = S_1 \times S_1$$

$$S_5 = 2^{S_1}$$

$$S_5 = 2^{S_1}$$

$$S_6 = S_1 \cap S_2$$
$$S_7 = S_2 \cap S_3$$

$$S_7 = S_2 \cap S_3$$

Problem 2 (2 points)

Prove that, if $S_1 \subseteq S_2$, then $\overline{S_2} \subseteq \overline{S_1}$.

Problem 3 (4 points)

Prove the following equalities:

(a)
$$1+2+3+4+...+n=\frac{n\cdot(n+1)}{2}$$
.

(b)
$$1 + x + x^2 + x^3 + ... + x^n = \frac{x^{n+1}-1}{x-1}$$
 (where $x \neq 1$).