Analysis of Algorithms: Solutions 5

X
X
X X
X X X
X X X
X X X
number of X X X
homeworks X X X X
X X X X
X X X X
X X X X X X X
X X X X X X X X X

Problem 1
Give a recursive version of the TREE-INSERT procedure.

The following procedure inserts a new node z into a subtree rooted at a node z. Initially, x
must be the root of a tree; that is, in order to insert z into a tree 1T', we make the top-level
call RECURSIVE-INSERT (root[T], z). For simplicity, we assume that the tree is not empty.

RECURSIVE-INSERT(z, 2)
if key|z] < key|z] and left-child[z] # NIL
then RECURSIVE-INSERT(left-child[z], z)
if key|z] > key[z]| and right-child[z] # NIL
then RECURSIVE-INSERT(right-child|z], z)
parent|z] « x
if keylz] < key[x]
then left-child[z] «+ z
else right-childx] < z

Problem 2
Suppose we apply the CONNECTED-COMPONENTS algorithm to an undirected graph G, with
vertices G[V| = {a,b,c,d,e, f,g,h,i,j,k}, and its edges F[G] are processed in the following

Order (di 7’)’ (fi k)’ (g’ 7’)’ (b’ g)’ (c’ e)’ (Z’])’ (d’ k)’ (b’])’ (d’ f)’ (gi-])’ (a/i e)' USlng Figure 22'1
in the textbook as a model, illustrate the steps of CONNECTED-COMPONENTS on this graph.

The final result of applying CONNECTED-COMPONENTS is the following three sets:

{a,c,e} {b,d, [9,5k} {h}

Problem 3
Write pseudocode for MAKE-SET, FIND-SET, and UNION, using the linked-list representa-
tion of disjoint sets. UNION must always append the shorter list to the longer one.

We use four fields for each element z of a linked list:

nezt[z]: pointer to the next element of the list; NIL if z is the last element
rep[z]: pointer to the set representative, that is, to the first element of the list
last]z]: if z is the first element of a list, then this field points to the last element
size[z]: if z is the first element, then this field contains the size of the list

If = is not the first element of a list, then the algorithms do not use its last and size fields,
and the information in these fields may be incorrect.

MAKE-SET(z)
nert[z] < NIL
replz] — x
last|z] + x
sizelx] + 1

FIND-SET(x)
return rep|z]

UNION(x)

if size[rep[x]] > size[rep|y]]
then APPEND(rep|z], reply])
else APPEND(rep[y], rep[z])

APPEND(z, y)
nezt|last[z]] <y
size[x] < size[z] + size[y]
z24y
while z # NIL D> change the rep pointers in the second list
do rep[z] + x
z + next|z]

Problem 4

Suppose that you are using a programming language that allows only integer numbers and
supports three operations on them: addition, subtraction, and multiplication. Write an
efficient algorithm DIVIDE(n, m) that computes |n/m|, where n and m are positive integers.

Simple algorithm
The following brute-force computation takes ©([n/m] + 1) time and ©(1) space.

SIMPLE-DIVIDE(n, m)
ratio < 0
while ratio-m <n

do ratio < ratio + 1
return ratio — 1

Fast algorithm
The following recursive algorithm runs is ©(lg[n/m| + 1) time. The space complexity is not
constant: the algorithm requires ©(1g[n/m| + 1) memory for the stack of recursive calls.

FAST-DIVIDE(n, m)
ifn<m
then return 0
ratio <— 2 - FAST-DIVIDE(n, 2 - m)
if n — ratio <m
then return ratio
else return ratio + 1

