Analysis of Algorithms: Solutions 4

X

X X X

X X X
X X X X X X
number of X X X X X X
homeworks X X X X X X
X X X X X X X
X X X X X X X X
5 6 7 8 9 10 11 12

grades

Problem 1

Give an efficient implementation of a HEAP-INCREASE-KEY (A4, 4, k) algorithm, which sets
Ali] + max(A[i], k) and updates the heap structure appropriately. Determine its time
complexity and briefly explain your answer.

HEAP-INCREASE-KEY(A, i, k)
if &£ > Ali]
then while i > 1 and A[PARENT(i)] < k
do Afi] + A[PARENT(i)]
i +PARENT(7)
Alil] « k
The worst-case running time is proportional to the height of the heap; hence, it is O(lgn).

Problem 2
Using Figure 8.1 (page 155) in the textbook as a model, illustrate the operation of the
PARTITION algorithm (which is a subroutine of QUICK-SORT) on the following array:

45142183

The values in the array are as follows:

initially: 4 5 1 4 2 1 8 3
after the first exchange: 351 4 2 1 8 4
after the second exchange: 311 4 2 5 8 4
after the third exchange: 311 2 4 5 8 4

Problem 3

Briefly describe how to adapt (a) MERGE-SORT and (b) QUICK-SORT to sort elements
stored in a linked list, without copying them into an array. Give the time complexity of your
algorithms; is it the same as the complexity of sorting an array?

We assume that every element z of a linked list has two fields, nezt[z] and key[z]. The next
field points to the next element of the linked list, whereas key contains a numeric value. If
x is the last element in the list, then next[z] is NIL.

We describe the modified versions of MERGE-SORT and QUICK-SORT procedures. The
time complexity of both procedures is the same as that for sorting arrays.

(a) The MERGE-SORT procedure gets two arguments, the first element of a linked list and
the number of elements in the list. The procedure finds the middle of the list and cuts it
in two sublists, y and z. Then, it makes recursive calls to sort these sublists. The MERGE
procedure is similar to that for arrays; however, it may be implemented to sort in-place.

MERGE-SORT(z,n) D> x is the first element; n is the number of elements
ifn>1
then ¢ < [n/2]
Yz
fori+ 1tog—1 > find the middle of the list
do z « nezt|z]
z < nertjx] > beginning of the second sublist
nect{x] <~ NIL D end of the first sublist
y < MERGE-SORT(y, q) > sort the first sublist
z < MERGE-SORT(z,n — q) > sort the second sublist
return MERGE(y, z) >> return the sorted list

(b) The QUICK-SORT procedure gets the first element of a linked list, and calls PARTITION
to divide the input list into two lists. The PARTITION procedure uses the key value of the
first element as the “pivot” for partitioning, and constructs two new linked lists: one with
the values smaller than the pivot, and the other with the values larger than the pivot; it
returns both lists. After calling PARTITION, the QUICK-SORT procedure makes recursive
calls to sort the two lists, and then appends the second sorted list to the end of the first one.

QUICK-SORT(x) D> « is the first element of the list
if next[zr] # NIL > more than one element?
then y, z < PARTITION(z) > PARTITION returns two lists
y < QUICK-SORT(y)
z < QUICK-SORT(2)
T4y
while nezt[z] # NIL > find the end of the first list
do z « nezt|z]

nect[x] < z D> append the second list to the end of the first one
return y

PARTITION(z)
k key|z] > k is the pivot for partitioning
Y — NIL > list of elements smaller than &
Z < NIL > list of elements greater than &
while z # NIL

do z-next + next[x]

if key[z] < k

then > add x to the smaller-element list
next[z] <y
Y x
else > add z to the larger-element list
next(z| « z
Z4 T
T < z-next > move to the next element

return y, z

Problem 4

A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) How would you represent a d-ary heap in an array? What are the expressions for
determining the parent of a given element, PARENT(7), and a j-th child of a given element,

CHILD(3, j), where 1 < j < d?

The following expressions determine the parent and j-th child of element i (where 1 < j < d):

PARENT(i) = {H_CZT_Q
CHILD(i,j) = (i—1)d+

|

j+1

(b) What is the height of a d-ary heap of n elements in terms of n and d? You need to give
an exact expression for the height, without using the ©-notation.

The height h of a heap is approximately equal to log,n.

h = [logg(nd —n+1) —

The exact height is

1.

