Analysis of Algorithms: Solutions 3
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Problem 1
Determine asymptotic upper and lower bounds for each of the following recurrences. Make
your bounds as tight as possible.

(a) T(n) = 16T(n/4) + n.

T(n) = n+16T(%)
n n
= 16(= + 16T(—
n+16(; + 167(5;))
n n
= 16— + 16°T(—
n+ 64+ 6 (42)
. n 0, M n
= n+167+16 (E+16T(E))
n n n
= n+16—+162—+163T(4—3)

4 42

_ n o 3N 4N 1
= n+161+16 E+16 F+16 E++160g4nm
= n+4n+4°n+ 43n + 4*n + ... + 4108y
= n(l4+4+42 443 4% . 4 4l8am)
4log4n—|—1_1

4—-1
4dn — 1

= n




(b) T(n) = 16T (n/4) + n?
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(d) T(n) =T(vn) +1

We “unwind” the recurrence until reaching some constant value of n, say, until n < 2:

7W0={®“) if n <2

T(yn)+1 ifn>2
For convenience, assume that n = 22k, for some natural value k.
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Finally, we note that k£ = lglgn, which means that T'(n) = ©(lglgn).

Problem 2
Consider the following sorting algorithm:

STOOGE-SORT(A, i, )

1. if A[5] > A[j]

2. then exchange A[i] <> A[j]

3. ifi+1>

4. then return

5. k< [(j—1+1)/3]

6. STOOGE-SORT(A,i,j — k) > first two-thirds

7. STOOGE-SORT(A,i+k,j) D last two-thirds

8. STOOGE-SORT(A,4,j — k) D first two-thirds again

(a) Argue that STOOGE-SORT(A, 1, n) correctly sorts the input array A[l..n].

We prove the correctness of the algorithm by induction. Clearly, the algorithm works for
one- and two-element arrays, which provides the induction base. Now suppose that it works
for all arrays shorter than A[i..j] and let us show that it also works for A[i..j].

After the execution of Line 6, A[i..(j — k)] is sorted, which means that every element of
Al(i + k)..(j — k)] is no smaller than every element of A[i..(s + k£ — 1)]; we write it as
Al(i+k)..(j—k)] > Ali..(i+k—1)]. Thus, A[(i+k)..j] has at least length(A[(i+k)..(j—Fk)]) =
Jj —1i— 2k + 1 elements each of which is no smaller than each element of A[i..(i + k — 1)].

After the execution of Line 7, A[(i + k)..j] is sorted, which implies that

3



(1) A[(j — k+1)..7] is sorted, and
(2) Al —k+1)..5] > Al(i + k)..(j — k)]

Since A[(i + k)..j] has at least (j — i — 2k + 1) elements no smaller than each element of
Ali..(i + k —1)] and length(A[(j — k +1)..5]) < j — i — 2k + 1, we conclude that

(3) Al —k+1)..5] > Ali..(i + k — 1)].
Putting together (2) and (3), we conclude that
(4) Al(j—k+1)..5] > Ali..(§ — k)]

After the execution of Line 8, the array Ali..(j — k)| is sorted. Putting this observation
together with (1) and (4), we see that the whole array A[i..j] is sorted.

(b) Give the recurrence for the worst-case running time of STOOGE-SORT and a tight asymp-
totic (©-notation) bound on the worst-case running time.

The algorithm first performs a constant-time computation (Lines 1-5), and then recursively
calls itself three times (Lines 6-8), each time on an array whose size is 2/3 of the original
array’s size. Thus, the recurrence is as follows:

T(n) = 37(>

3n)+@(1).

This recurrence describes both the worst-case and best-case running time, since the algo-
rithm’s behavior does not depend on the order of elements in the input array. We use the
iteration method to solve it:
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(c) Compare the worst-case running time of STOOGE-SORT with that of INSERTION-SORT
and MERGE-SORT. Is it a good algorithm?

STOOGE-SORT is slower than the other sorting algorithms. Even INSERTION-SORT has the
complexity O(n?), which is much better than ©(n>™).



Problem 3

Consider the following algorithm, which inputs a natural number n and returns a natural
number m. The algorithm calls a MIN-OUTSIDE(S) procedure which finds the minimal
natural number that does not belong to the set S. Give a much faster algorithm that
computes the same value m, without using a matrix.

SLOW-COUNTER(n)
fori< 1ton
do for j < 1ton
do S« 0 > make the set S empty
fork<1toi—1
do S < SU{A[k,j]} > add the A[k, j] value to S
for k< 1toj—1
do S+ SU{A[i,k]} > add the A[i, k] value to S
Ali, j] < MIN-OUTSIDE(S) > find the minimal natural number not in S
m < A[n,n]
return m

The main diagonal of the resulting matrix consists of zeros, whereas all other elements of
the matrix are greater than zero. For example, if n = 8, then the matrix is as follows:

01 2 3 4 5 6 7
10 3 2 5 4 7 6
2 3 016 7 4 5
321 07 6 5 4
4 56 701 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 01
76 54 3 210

Thus, m is always zero, and we may replace SLOW-COUNTER with the following algorithm:

FAST-COUNTER(n)
return (



