Analysis of Algorithms: Solutions 3

This histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1

Determine asymptotic upper and lower bounds for each of the following recurrences. Make your bounds as tight as possible.

(a)
$$T(n) = 16T(n/4) + n$$
.

$$T(n) = n + 16T(\frac{n}{4})$$

$$= n + 16(\frac{n}{4} + 16T(\frac{n}{4^2}))$$

$$= n + 16\frac{n}{4} + 16^2T(\frac{n}{4^2})$$

$$= n + 16\frac{n}{4} + 16^2(\frac{n}{4^2} + 16T(\frac{n}{4^3}))$$

$$= n + 16\frac{n}{4} + 16^2\frac{n}{4^2} + 16^3T(\frac{n}{4^3})$$

$$...$$

$$= n + 16\frac{n}{4} + 16^2\frac{n}{4^2} + 16^3\frac{n}{4^3} + 16^4\frac{n}{4^4} + ... + 16^{\log_4 n}\frac{n}{4^{\log_4 n}}$$

$$= n + 4n + 4^2n + 4^3n + 4^4n + ... + 4^{\log_4 n}n$$

$$= n(1 + 4 + 4^2 + 4^3 + 4^4 + ... + 4^{\log_4 n})$$

$$= n\frac{4^{\log_4 n + 1} - 1}{4 - 1}$$

$$= n\frac{4n - 1}{3}$$

$$= \Theta(n^2)$$

(b)
$$T(n) = 16T(n/4) + n^2$$
.

$$T(n) = n^{2} + 16T(\frac{n}{4})$$

$$= n^{2} + 16((\frac{n}{4})^{2} + 16T(\frac{n}{4^{2}}))$$

$$= n^{2} + 16(\frac{n}{4})^{2} + 16^{2}T(\frac{n}{4^{2}})$$

$$= n^{2} + 16(\frac{n}{4})^{2} + 16^{2}((\frac{n}{4^{2}})^{2} + 16T(\frac{n}{4^{3}}))$$

$$= n^{2} + 16(\frac{n}{4})^{2} + 16^{2}((\frac{n}{4^{2}})^{2} + 16^{3}T(\frac{n}{4^{3}})$$

$$\dots$$

$$= n^{2} + 16(\frac{n}{4})^{2} + 16^{2}((\frac{n}{4^{2}})^{2} + 16^{3}((\frac{n}{4^{3}})^{2} + 16^{4}((\frac{n}{4^{4}})^{2} + \dots + 16^{\log_{4}n}((\frac{n}{4\log_{4}n})^{2}))$$

$$= (n^{2} + n^{2} + n^{2} + n^{2} + n^{2} + \dots + n^{2})$$

$$= n^{2}(\log_{4}n + 1)$$

$$= \Theta(n^{2} \lg n)$$

(c) $T(n) = 2T(n/4) + \sqrt{n}$.

$$T(n) = \sqrt{n} + 2T(\frac{n}{4})$$

$$= \sqrt{n} + 2(\sqrt{\frac{n}{4}} + 2T(\frac{n}{4^2}))$$

$$= \sqrt{n} + 2\sqrt{\frac{n}{4}} + 2^2T(\frac{n}{4^2})$$

$$= \sqrt{n} + 2\sqrt{\frac{n}{4}} + 2^2(\sqrt{\frac{n}{4^2}} + 2T(\frac{n}{4^3}))$$

$$= \sqrt{n} + 2\sqrt{\frac{n}{4}} + 2^2\sqrt{\frac{n}{4^2}} + 2^3T(\frac{n}{4^3})$$

$$\dots$$

$$= \sqrt{n} + 2\sqrt{\frac{n}{4}} + 2^2\sqrt{\frac{n}{4^2}} + 2^3\sqrt{\frac{n}{4^3}} + 2^4\sqrt{\frac{n}{4^4}} + \dots + 2^{\log_4 n}\sqrt{\frac{n}{4^{\log_4 n}}}$$

$$= \sqrt{n} + \sqrt{n} + \sqrt{n} + \sqrt{n} + \dots + \sqrt{n}$$

$$= \sqrt{n}(\log_4 n + 1)$$

$$= \Theta(\sqrt{n} \log_n n)$$

(d)
$$T(n) = T(\sqrt{n}) + 1$$

We "unwind" the recurrence until reaching some constant value of n, say, until $n \leq 2$:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le 2\\ T(\sqrt{n}) + 1 & \text{if } n > 2 \end{cases}$$

For convenience, assume that $n = 2^{2^k}$, for some natural value k.

$$T(2^{2^{k}}) = 1 + T(\sqrt{2^{2^{k}}})$$

$$= 1 + T(2^{2^{k-1}})$$

$$= 1 + 1 + T(\sqrt{2^{2^{k-1}}})$$

$$= 1 + 1 + T(2^{2^{k-2}})$$

$$= 1 + 1 + 1 + T(\sqrt{2^{2^{k-2}}})$$

$$= 1 + 1 + 1 + T(2^{2^{k-3}})$$

$$\cdots$$

$$= \underbrace{1 + 1 + 1 + \dots + 1}_{k} + T(2)$$

$$= k + \Theta(1)$$

$$= \Theta(k)$$

Finally, we note that $k = \lg \lg n$, which means that $T(n) = \Theta(\lg \lg n)$.

Problem 2

Consider the following sorting algorithm:

STOOGE-SORT(A, i, j)

- 1. **if** A[i] > A[j]
- then exchange $A[i] \leftrightarrow A[j]$
- 3. **if** $i + 1 \ge j$
- then return
- 5. $k \leftarrow \lfloor (j i + 1)/3 \rfloor$

- 6. STOOGE-SORT(A, i, j k) \triangleright first two-thirds
 7. STOOGE-SORT(A, i + k, j) \triangleright last two-thirds
 8. STOOGE-SORT(A, i, j k) \triangleright first two-thirds again
- (a) Argue that Stooge-Sort(A, 1, n) correctly sorts the input array A[1..n].

We prove the correctness of the algorithm by induction. Clearly, the algorithm works for one- and two-element arrays, which provides the induction base. Now suppose that it works for all arrays shorter than A[i..j] and let us show that it also works for A[i..j].

After the execution of Line 6, A[i..(j-k)] is sorted, which means that every element of A[(i+k)..(j-k)] is no smaller than every element of A[i..(i+k-1)]; we write it as $A[(i+k)..(j-k)] \ge A[i..(i+k-1)]$. Thus, A[(i+k)..j] has at least length(A[(i+k)..(j-k)]) =j-i-2k+1 elements each of which is no smaller than each element of A[i..(i+k-1)].

After the execution of Line 7, A[(i+k)..j] is sorted, which implies that

(1) A[(j-k+1)..j] is sorted, and

(2)
$$A[(j-k+1)..j] \ge A[(i+k)..(j-k)].$$

Since A[(i+k)..j] has at least (j-i-2k+1) elements no smaller than each element of A[i..(i+k-1)] and $length(A[(j-k+1)..j]) \le j-i-2k+1$, we conclude that

(3)
$$A[(j-k+1)..j] \ge A[i..(i+k-1)].$$

Putting together (2) and (3), we conclude that

(4)
$$A[(j-k+1)..j] \ge A[i..(j-k)].$$

After the execution of Line 8, the array A[i..(j-k)] is sorted. Putting this observation together with (1) and (4), we see that the whole array A[i..j] is sorted.

(b) Give the recurrence for the worst-case running time of STOOGE-SORT and a tight asymptotic (Θ -notation) bound on the worst-case running time.

The algorithm first performs a constant-time computation (Lines 1–5), and then recursively calls itself three times (Lines 6–8), each time on an array whose size is 2/3 of the original array's size. Thus, the recurrence is as follows:

$$T(n) = 3T(\frac{2}{3}n) + \Theta(1).$$

This recurrence describes both the worst-case and best-case running time, since the algorithm's behavior does not depend on the order of elements in the input array. We use the iteration method to solve it:

$$T(n) = 1 + 3T(\frac{2}{3}n)$$

$$= 1 + 3 + 9T(\frac{4}{9}n)$$

$$\dots$$

$$= 1 + 3 + 3^{2} + \dots + 3^{\log_{3/2} n}$$

$$= \frac{3^{\log_{3/2} n + 1} - 1}{3 - 1}$$

$$= \Theta(3^{\log_{3/2} n})$$

$$= \Theta(3^{(\log_{3} n)/(\log_{3} 3/2)})$$

$$= \Theta(n^{1/(\log_{3} 3/2)})$$

$$= \Theta(n^{2.71}).$$

(c) Compare the worst-case running time of Stooge-Sort with that of Insertion-Sort and Merge-Sort. Is it a good algorithm?

STOOGE-SORT is slower than the other sorting algorithms. Even Insertion-Sort has the complexity $O(n^2)$, which is much better than $\Theta(n^{2.71})$.

Problem 3

Consider the following algorithm, which inputs a natural number n and returns a natural number m. The algorithm calls a MIN-OUTSIDE(S) procedure which finds the minimal natural number that does not belong to the set S. Give a much faster algorithm that computes the same value m, without using a matrix.

The main diagonal of the resulting matrix consists of zeros, whereas all other elements of the matrix are greater than zero. For example, if n = 8, then the matrix is as follows:

```
0
        3
           4
     3
        2
  0
           5
              4
                    6
1
                 7
2
  3
     0
        1
              7
                    5
           6
                 4
3
  2
     1
        0 7
                 2 3
4
  5 6
        7 \quad 0
              1
5
  4
    7
        6 1
                 3 2
6
  7
     4
        5
           2
              3 0
                   1
          3
  6
     5
        4
              2
                1
```

Thus, m is always zero, and we may replace Slow-Counter with the following algorithm:

```
Fast-Counter(n) return 0
```