Analysis of Algorithms: Assignment 7
Due date: November 11 (Thursday)

Problem 1 (3 points)

Using Figure 23.4 in the textbook as a model, illustrate the steps of depth-first search on
the undirected graph of Figure 23.3. Assume that the main loop of the algorithm processes
the vertices in the alphabetical order, from r to y.

Problem 2 (4 points)
The depth-first search algorithm may be used to identify the connected components of an
undirected graph. Write a modified version of DFS for performing this task.

Your algorithm must determine the number k of connected components in an undirected
graph and return this number. Furthermore, for every vertex u of the graph, the algorithm
must assign an integer label component[u], between 1 and k, that denotes the corresponding
connected component. If two vertices are in the same component, they must get the same
label. On the other hand, if vertices are in different components, their labels must be distinct.

Problem 3 (3 points)

Suppose that you need to construct a minimum spanning tree for a graph represented by an
adjacency matriz, rather than adjacency lists. Give a modified version of the MST-PRIM
algorithm for the adjacency-matrix representation; its running time must be O(V?).

Problem 4 (bonus)
This problem s optional, and it allows you to get 2 bonus points toward your final grade for
the course. You cannot submit this bonus problem after the deadline.

If we need to print all elements of a standard linked list (see Figure 1), then we may write a
simple program that starts at the beginning of the list and follows pointers until reaching the
end; however, novice programmers sometimes mistakingly create a list whose last element
points into the middle of the list (see Figure 2), and then an attempt to print all elements
leads to an infinite loop.

Write an algorithm CHECK-LOOP(z) that determines whether a given linked list is
“looped.” The algorithm’s argument x is the first element of the list. If a list is looped
(Figure 2), CHECK-LOOP returns TRUE; if the list is not looped (Figure 1), it returns FALSE.

Your algorithm has to run in linear time. Furthermore, it must run in-place (no extra
memory) and preserve the initial contents of the list. These restrictions mean that you cannot
mark the elements of the list that you have visited, because storing such marks would require
a lot of additional memory.

I e B e T e B e D%D@

1. Standard linked list. 2. Looped linked list.



