Analysis of Algorithms: Assignment 2

Due date: September 9 (Thursday)

Problem 1 (3 points)

Write pseudocode for the MERGE(A, p, q, r) procedure.

Problem 2 (3 points)

For each of the following functions, give an asymptotically tight bound (Θ -notation). Make your expression inside Θ as simple as possible.

Example: $2n^3 + 3n^2 = \Theta(n^3)$.

(a)
$$(n^2 + n + 1)^{10}$$

(d)
$$n^{10} + 0.99^n$$

(a)
$$(n^2 + n + 1)^{10}$$

(b) $(\sqrt{n} + \sqrt[3]{n} + \lg n)^{10}$
(c) $n^{10} + 1.01^n$

(e)
$$2^n + n! + n^n$$

(c)
$$n^{10} + 1.01^m$$

$$(\mathbf{f})^{\prime} 2^{\lg n}$$

Problem 3 (4 points)

Give an example of functions f(n) and g(n) such that $f(n) \neq O(g(n))$ and $f(n) \neq O(g(n))$.

Problem 4 (bonus)

This problem is optional, and it does not affect your grade for the homework; however, if you solve it, then you will get 2 bonus points toward your final grade for the course. You cannot submit this bonus problem after the deadline.

Suppose that we have four algorithms, called A_0 , A_1 , A_2 , and A_3 , whose respective running times are n, n^2 , $\lg n$, and 2^n . If we use a certain old computer, then the maximal sizes of problems solvable in an hour by these algorithms are s_0 , s_1 , s_2 , and s_3 .

Suppose that we have replaced the old computer with a new one, which is k times faster. Now the maximal size of problems solvable in an hour by A_0 is $k \cdot s_0$. What are the maximal problem sizes for the other three algorithms, if we run them on the new computer?