Analysis of Algorithms: Solutions 8

number of
homeworks

P4 P4 P P PE P DA P P P e e

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1

Using Figure 16.2 in the textbook as a model, draw the recursion tree for the MERGE-SORT
procedure on a sixteen-element array. Explain why dynamic programming is ineffective for
speeding up MERGE-SORT.

1.16
, ’
1.8 9.16
1.4 5.8 9.12 13.16
1.2 3.4 5.6 7.8 9.10 11.12 13.14 15.16
7N 7N 7N 7N 7N 7N 7N 7N
1.1 22 33 44 55 6.6 7.7 88 9.9 10.10 11.11 12.12 13.13 14.14 15.15 16.16

The MERGE-SORT procedure does not have overlapping subproblems, that is, all nodes of
the recursion tree are distinct. We cannot re-use the results of recursive calls and, hence,
dynamic programming does not improve the efficiency.



Problem 2

Determine a longest common subsequence of (1,0,0,1,0,1) and (0,1,0,1,1,0,1,1). Using
Figure 16.3 in the book as a model, draw the table constructed by the LCS-LENGTH algo-
rithm for these two sequences (you do not need to show arrows in your table).

The longest common subsequences are (0,0,1,0,1), (1,0,1,0,1), and (1,0,0,1,1). The table
computed by LCS-LENGTH is as follows:

6|1 012344455
51012333444
41012233344
31011222333
21011222222
11001111111
0] 000000000

012345678

Problem 3

Write an algorithm INCREASING-LENGTH(A, n) that determines the length of a longest in-
creasing subsequence of an array Aln].

Let d[i] denote the length of a longest increasing subsequence whose last element is A[i]. For
example, suppose that A = (1,2,1,2,3) and ¢ = 3; then, the longest increasing subsequence
that ends at A[3] is (1, 1), which implies that d[3] = 2.

Observe that this subsequence contains at least one element and, hence, d[i] > 1. Fur-
thermore, if j < 4 and A[j] < A[i], then d[i] > d[j] + 1, because we may construct a
(d[j] + 1)-element increasing subsequence that ends at A[i], by adding A[i] to the longest
increasing subsequence that ends at A[j]. These observations lead to the following algorithm,
whose running time is ©(n?):

INCREASING-LENGTH(A, n)
d-maz + 0
fori< 1ton
do d[i] + 1
for j«1toi—1
do if A[i] > A[j] and d[i] < d[j] + 1
then d[i] < d[j] + 1
if d-maz < d[i]
then d-maz «+ d[i]
return d-mazx



