Analysis of Algorithms: Solutions 6

X

X

X

X

X

X

X

X

X

X X X

number of X X X X
homeworks X X X X
X X X X X X

X X X X X X X

X X X X X X X

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1

Write algorithms for converting (a) an adjacency-list representation of a graph into an
adjacency matrix and (b) an adjacency matrix into adjacency lists. Give the time complexity
of your algorithms.

We denote an adjacency list of a vertex u by Adj-List[u], and an adjacency-matrix element
for vertices v and v by Adj-Matriz[u,v]. The time complexity of both algorithms is ©(V?).

(a) Converting adjacency lists into a matrix.

Li1sTS-TO-MATRIX(G) ©> G is represented by adjacency lists.
for each u € V[G]
do for each v € V[G]
do Adj-Matriz[u,v] < 0
for each u € V|G|
do for each v € Adj-List[u]
do Adj-Matriz[u,v] + 1

(b) Converting an adjacency matrix into lists.

MATRIX-TO-LISTS(G) > G is represented by an adjacency matrix.
for each u € V|G|
do initialize an empty list Adj-List[u]
for each u € V[G]
do for each v € V[G]
do if Adj-Matriziu,v] =1
then add v to Adj-List[u]

Problem 2 (3 points)
Using Figure 23.3 in the textbook as a model, illustrate the steps of breadth-first search on
the directed graph of Figure 23.2(a), with vertex 3 as the source.

The order of painting the vertices is as follows:

gray 3 black 5
gray b black 6
gray 6 gray 2

black 3 black 4
gray 4 black 2

Problem 3
The depth-first search algorithm may be used to identify the connected components of an
undirected graph. Write a modified version of DF'S for performing this task.

We use the component field of a vertex instead of the color. Initially, this field is set to 0.
When the DFS algorithm discovers the vertex, it replaces 0 with the component number.

DFS-CoOMPONENTS(G)
k < 0 > Component counter.
for each u € V|G|

do component[u] < 0
for each u € V|G|

do if component[u] # 0

then k +— k+1
DFS-VisIT(u, k)

return k

DFS-VisiT(u, k)
component[u] < k > u has just been discovered.
for each v € Adj[u]
do if component[v] =0
then DFS-VisiT(v, k)

