Analysis of Algorithms: Solutions 3

X
X
number of X X
homeworks X X X
X X X X
X X X X X X
X X X X X X X
X X X X X X X X X X X

0 0.5-1 1.5-2 2.5-3 3.5-4 4.5-5 5.5-6 6.5-7 7.5-8 8.5-9 9.5-10
grades

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1
A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) How would you represent a d-ary heap in an array? What is the height of a d-ary heap
of n elements in terms of n and d?

The following expressions determine the parent and j-th child of element ¢ (where 1 < j < d):

PARENT(i) = {MT_?J,

CHILD(i,j) = (i—1)d+j+1.
The height h of a heap is approzimately equal to log;n. The exact height is
h = [logy(nd — n+1) —1].

(b) Give an efficient implementation of HEAP-EXTRACT-MAX for a d-ary heap.

The HEAP-EXTRACT-MAX procedure for d-ary heaps is identical to that for binary heaps;
however, we have to re-implement HEAPIFY, which is a subroutine of HEAP-EXTRACT-MAX.

HEAPIFY(A,i,n,d)
largest < 1
for j«< 1tod > loop through all children of ¢

do if CHILD(4,j) < n and A[CHILD(i,)] > A[largest]

then largest < CHILD(i, j)

if largest # i

then exchange A[i] <> A[largest]

HEAPIFY(A,largest)

(c) Give an efficient implementation of a HEAP-INCREASE-KEY(A, i, k) algorithm, which
sets A[i] + max(A[i], k) and updates the heap structure appropriately. Give its time com-
plexity, in terms of d and n, and briefly explain your answer.

1

HEAP-INCREASE-KEY(A, i, k)
if £ > Ali]
then while : > 1 and A[PARENT(i)] < k
do A[i] < A[PARENT(i)]
i < PARENT(7)
Ali] « k
The worst-case running time is proportional to the height of the heap; hence, it is O(log, n).

Problem 2
Consider the following sorting algorithm:

STOOGE-SORT(A, i,)

1. if Afi] > A[j]

2. then exchange A[i] <> A[j]

3.ifi+1>7

4. then return

5. k+ [(j—1+1)/3]

6. STOOGE-SORT(A,1,j — k) > First two-thirds.

7. STOOGE-SORT(A, 7 + k,) > Last two-thirds.

8. STOOGE-SORT(A,1,j — k) > First two-thirds again.

(a) Argue that STOOGE-SORT(A, 1, n) correctly sorts the input array A[l..n].

We proof the correctness of the algorithm by induction. Clearly, the algorithm works cor-
rectly for one- and two-element arrays, which provides the induction base. Now suppose
that it works for all arrays shorter than A[i..j] and let us show that it also works for A[i..j].

After the execution of Line 6, Ali..(j — k)] is sorted, which means that every element
of A[(i + k)..(j — k)] is no smaller than every element of A[i..(i + k£ — 1)] (we will write
it as A[(¢ + k)..(j — k)] > Ali..(i + k — 1)]). Therefore, A[(i + k)..j] contains at least
length(A[(i + k)..(j — k)]) = j — i — 2k + 1 elements each of which is no smaller than each
element of Afi..(i + k — 1)].

After the execution of Line 7, A[(i + k)..j] is sorted, which implies that

(1) A[(j — k +1)..7] is sorted, and
(2) Al =k +1)..5]1 > A[(i + k)..(j — k)].

On the other hand, since A[(i + k)..j] has at least (j — i — 2k + 1) elements no smaller than
each element of Afi..(i + k — 1)] and length(A[(j — k + 1)..j]) < j —i— 2k + 1, we conclude
that

(3) Al(j—k+1).5] > Ali..(i + k = 1)].
Putting together (2) and (3), we conclude that:
(4) Al(j—k+1)..5] > Ali..(§ — k)]

After the execution of Line 8, the array A[i..(j — k)| is sorted. Putting this observation
together with (1) and (4), we see that the whole array A[i..j] is sorted.

(b) Give the recurrence for the worst-case running time of STOOGE-SORT and a tight asymp-
totic (©-notation) bound on the worst-case running time.

The algorithm first performs a constant-time computation (Lines 1-5), and then recursively
calls itself three times (Lines 6-8), each time on an array whose size is 2/3 of the original
array’s size. Thus, the recurrence is as follows:

T(n) = 3T(§

This recurrence describes both the worst-case and best-case running time, since the algo-
rithm’s behavior does not depend on the order of elements in the input array. We use the
iteration method to solve it:

n)+ O(1).

T(n) = 1+3T(§n)

4

= 1+3+32+.. 4308
310g3/2 n+l 1
3—1
— @(310g3/2n)
— @(3(1083 n)/(logs 3/2))
— @(1/(logs 3/2))
o(n>™).

(c) Compare the worst-case running time of STOOGE-SORT with that of insertion sort,
merge-sort, heap-sort, and quick-sort. Is it a good algorithm?

STOOGE-SORT is slower than the other sorting algorithms. Even the insertion sort has the
complexity O(n?), which is much better than ©(n*™).

Problem 3
We consider an integer array A[l..n| and define a segment sum from p to r, where 1 < p <
r < n, as follows:

Sum(pa ’f’) = Zpgigr A[Z]
That is, it is the sum of all array elements in the segment A[p..r|. Note that the total number

of distinct segments is "("+1 . Write a linear-time (that is, ©(n)) algorithm that determines
the maximum over all segment sums.

MAX-SEGMENT(A, n)
Local-Mazx < 0
Global-Maz < 0
fori+ 1ton
do Local-Maz + max(A[i], Local-Maz+ Ali])
> Local-Maz is the maximum over the segments whose last element is A[7].
Global-Mazx < max(Local-Maz, Global-Maz)
> Global-Maz is the maximum over all segments in A[1..4].
return Global-Maz

