Analysis of Algorithms: Solutions 3

					X					
					X					
number of				X	X					
homeworks			X	X		X				
				X	X		X		X	
		X		X	X		X		X	X
		X	X	X	X		X		X	X
X	X	X	X	X	X	X	X	X	Х	X
0	0.5-1	1.5-2	2.5-3	3.5-4	4.5-5 grades		6.5-7	7.5-8	8.5-9	9.5-10

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1

A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) How would you represent a d-ary heap in an array? What is the height of a d-ary heap of n elements in terms of n and d?

The following expressions determine the parent and j-th child of element i (where $1 \le j \le d$):

$$\begin{aligned} \text{Parent}(i) &= & \left\lfloor \frac{i+d-2}{d} \right\rfloor, \\ \text{Child}(i,j) &= & (i-1)d+j+1. \end{aligned}$$

The height h of a heap is approximately equal to $\log_d n$. The exact height is

$$h = \lceil \log_d(nd - n + 1) - 1 \rceil.$$

(b) Give an efficient implementation of HEAP-EXTRACT-MAX for a d-ary heap.

The Heap-Extract-Max procedure for d-ary heaps is identical to that for binary heaps; however, we have to re-implement Heapify, which is a subroutine of Heap-Extract-Max.

 $\begin{aligned} & \operatorname{Heapify}(A,i,n,d) \\ & \operatorname{largest} \leftarrow i \\ & \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ d \quad \rhd \text{ loop through all children of } i \\ & \mathbf{do} \ \ \mathbf{if} \ \operatorname{Child}(i,j) \leq n \ \mathbf{and} \ A[\operatorname{Child}(i,j)] > A[\operatorname{largest}] \\ & \mathbf{then} \ \operatorname{largest} \leftarrow \operatorname{Child}(i,j) \end{aligned}$ $\mathbf{if} \ \operatorname{largest} \neq i \\ & \mathbf{then} \ \operatorname{exchange} \ A[i] \leftrightarrow A[\operatorname{largest}] \\ & \operatorname{Heapify}(A,\operatorname{largest}) \end{aligned}$

(c) Give an efficient implementation of a Heap-Increase-Key(A, i, k) algorithm, which sets $A[i] \leftarrow \max(A[i], k)$ and updates the heap structure appropriately. Give its time complexity, in terms of d and n, and briefly explain your answer.

1

```
HEAP-INCREASE-KEY(A, i, k) if k > A[i] then while i > 1 and A[PARENT(i)] < k do A[i] \leftarrow A[PARENT(i)] i \leftarrow PARENT(i) A[i] \leftarrow k
```

The worst-case running time is proportional to the height of the heap; hence, it is $O(\log_d n)$.

Problem 2

Consider the following sorting algorithm:

```
STOOGE-SORT(A, i, j)
1. if A[i] > A[j]
2. then exchange A[i] \leftrightarrow A[j]
3. if i+1 \geq j
4. then return
5. k \leftarrow \lfloor (j-i+1)/3 \rfloor
6. STOOGE-SORT(A, i, j-k) > First two-thirds.
7. STOOGE-SORT(A, i, j-k) > Last two-thirds.
8. STOOGE-SORT(A, i, j-k) > First two-thirds again.
```

(a) Argue that Stooge-Sort(A, 1, n) correctly sorts the input array A[1..n].

We proof the correctness of the algorithm by induction. Clearly, the algorithm works correctly for one- and two-element arrays, which provides the induction base. Now suppose that it works for all arrays shorter than A[i..j] and let us show that it also works for A[i..j].

After the execution of Line 6, A[i..(j-k)] is sorted, which means that every element of A[(i+k)..(j-k)] is no smaller than every element of A[i..(i+k-1)] (we will write it as $A[(i+k)..(j-k)] \ge A[i..(i+k-1)]$). Therefore, A[(i+k)..j] contains at least length(A[(i+k)..(j-k)]) = j-i-2k+1 elements each of which is no smaller than each element of A[i..(i+k-1)].

After the execution of Line 7, A[(i+k)..j] is sorted, which implies that

(1) A[(j-k+1)..j] is sorted, and

(2)
$$A[(j-k+1)..j] \ge A[(i+k)..(j-k)].$$

On the other hand, since A[(i+k)..j] has at least (j-i-2k+1) elements no smaller than each element of A[i..(i+k-1)] and $length(A[(j-k+1)..j]) \leq j-i-2k+1$, we conclude that

(3)
$$A[(j-k+1)..j] \ge A[i..(i+k-1)].$$

Putting together (2) and (3), we conclude that:

(4)
$$A[(j-k+1)..j] \ge A[i..(j-k)].$$

After the execution of Line 8, the array A[i..(j-k)] is sorted. Putting this observation together with (1) and (4), we see that the whole array A[i..j] is sorted.

(b) Give the recurrence for the worst-case running time of STOOGE-SORT and a tight asymptotic (Θ -notation) bound on the worst-case running time.

The algorithm first performs a constant-time computation (Lines 1–5), and then recursively calls itself three times (Lines 6–8), each time on an array whose size is 2/3 of the original array's size. Thus, the recurrence is as follows:

$$T(n) = 3T(\frac{2}{3}n) + \Theta(1).$$

This recurrence describes both the worst-case and best-case running time, since the algorithm's behavior does not depend on the order of elements in the input array. We use the iteration method to solve it:

$$T(n) = 1 + 3T(\frac{2}{3}n)$$

$$= 1 + 3 + 9T(\frac{4}{9}n)$$
...
$$= 1 + 3 + 3^{2} + ... + 3^{\log_{3/2} n}$$

$$= \frac{3^{\log_{3/2} n + 1} - 1}{3 - 1}$$

$$= \Theta(3^{\log_{3/2} n})$$

$$= \Theta(3^{(\log_{3} n)/(\log_{3} 3/2)})$$

$$= \Theta(n^{1/(\log_{3} 3/2)})$$

$$= \Theta(n^{2.71}).$$

(c) Compare the worst-case running time of Stooge-Sort with that of insertion sort, merge-sort, heap-sort, and quick-sort. Is it a good algorithm?

STOOGE-SORT is slower than the other sorting algorithms. Even the insertion sort has the complexity $O(n^2)$, which is much better than $\Theta(n^{2.71})$.

Problem 3

We consider an integer array A[1..n] and define a segment sum from p to r, where $1 \le p \le r \le n$, as follows:

$$sum(p, r) = \sum_{p \le i \le r} A[i].$$

That is, it is the sum of all array elements in the segment A[p..r]. Note that the total number of distinct segments is $\frac{n(n+1)}{2}$. Write a linear-time (that is, $\Theta(n)$) algorithm that determines the maximum over all segment sums.

```
\begin{aligned} & \operatorname{Max-Segment}(A,n) \\ & \operatorname{Local-Max} \leftarrow 0 \\ & \operatorname{Global-Max} \leftarrow 0 \\ & \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n \\ & \mathbf{do} \ \operatorname{Local-Max} \leftarrow \max(A[i], \ \operatorname{Local-Max} + A[i]) \\ & \rhd \operatorname{Local-Max} \ \text{is the maximum over the segments whose last element is } A[i]. \\ & \operatorname{Global-Max} \leftarrow \max(\operatorname{Local-Max}, \ \operatorname{Global-Max}) \\ & \rhd \operatorname{Global-Max} \ \text{is the maximum over all segments in } A[1..i]. \end{aligned}
```