Analysis of Algorithms: Solutions 2

X
X X
number of X X X X
homeworks X X X X X
X X X X X X X
X X X X X X X
X X X X X X X X X X

0 0.5-1 1.5-2 2.5-3 3.5-4 4.5-5 5.5-6 6.5-7 7.5-8 8.5-9
grades

The histogram shows the distribution of grades for the homeworks submitted on time.

Problem 1
Prove the following properties of asymptotic bounds:

(a) If f(n) = ©(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

Since f(n) = ©(g(n)), we conclude that there are some positive constants ¢y, ¢z, and n; such
that, for all n > ny, we have:

cig(n) < f(n) < cag(n).

Similarly, since g(n) = ©(h(n)), there exist some positive constants c3, ¢4, and ny such that,
for all n > ng:
csh(n) < g(n) < csh(n).

We may combine these two inequalities as follows:
cicsh(n) < c1g(n) < f(n) < cag(n) < cocqh(n).
We now define three new constants, cs, cg, and ngz:

C5 = C1Cs,
Ce = CoC4,
ns = max(n, ng).

Then, the last inequality implies that, for every n > n3, we have:
csh(n) < f(n) < cgh(n).

This inequality means that, by definition, f(n) = ©(h(n)).

(b) f(n) = O(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)).

If f(n) = ©(g(n)), then there are positive constants c;, ¢, and ng such that, for every
n > ng, we have:

cig(n) < f(n) < cag(n).

1



This inequality immediately implies that f(n) = O(g(n)) and f(n) = Q(g(n)).
To prove the opposite direction, suppose that f(n) = O(g(n)) and f(n) = Q(g(n)). By
definition of O, there are positive constants co, and no such that, for all n > ny:

f(n) < cog(n).

Similarly, by definition of €2, there are constants ¢; and ny such that, for all n > nq:

f(n) > cig(n).

In order to combine these two inequalities, we define ng = max(ny, ny). Then, for all n > ny,
we have:

ag(n) < f(n) < cag(n),
which implies that f(n) = ©(g(n)).

(c) If f(n) = o(g(n)) then f(n) = O(g(n)) and f(n) # O(g(n)).

Since f(n) = o(g(n)), we conclude that, for any ¢, there exists some ng such that, for all
n > ng, we have f(n) < c- g(n).

To show that f(n) = O(g(n)), we need to find ¢; and n; such that, for all n > n,,
f(n) < c1g(n). We may pick any ¢; > 0; by definition of o, there exists an adequate n;.

To show that f(n) # ©(g(n)), we derive a contradiction. Suppose that f(n) = ©(g(n)).
Then, there exist ¢ and ng such that, for all n > ng, we have f(n) > cog(n). On the other
hand, since f(n) = o(g(n)), there exists ng such that, for all n > ng, we have f(n) < cag(n).
Thus, if n > max(ng, n3), then we have both f(n) < cog(n) and f(n) > cog(n), which is a
contradiction.

Problem 2
Give an example of functions f(n) and g(n) such that f(n) # O(g(n)) and f(n) # Q(g(n)).

Consider the following two functions:

n if n is even;
f(n) _{ 1 if n is odd.

1 if n is even;
n if n is odd.

For even n, f(n) grows asymptotically faster than g(n). On the other hand, for odd n,
f(n) grows asymptotically slower. Therefore, g(n) is neither asymptotically lower bound nor
asymptotically upper bound for f(n).

Problem 3
Suppose that we have four algorithms, called Ay, A;, Ay, and Aj, whose respective running
times are n, n?, lgn, and 2". If we use a certain old computer, then the maximal sizes of
problems solvable in an hour by these algorithms are sg, s1, s2, and s3.

Suppose that we have replaced the old computer with a new one, which is £ times faster.
Now the maximal size of problems solvable in an hour by Ay is k- sg. What are the maximal

2



problem sizes for the other three algorithms, if we run them on the new computer?

For A;: On the old machine, the A; algorithm solves a problem of size s; in one hour. The
running time of this algorithm on a problem of size s, is s?; hence, s? = 1 hour.
The new machine is k times faster, which means that the running time of A; is n?/k.
We denote the size of the largest problem solvable in one hour by vy; then, v?/k = 1 hour.
We conclude that v?/k = s? and, hence, v; = s;v/k. Thus, the maximal size of a problem
solvable in one hour on the new machine is s;vk.

For A;: On the old machine, the A, algorithm solves a problem of size sy in one hour,
which means that 1g s, = 1 hour. If we denote the maximal problem solvable in an hour on
a new machine by vy, then lgwvy/k = 1 hour. We conclude that lg vy /k = lg so, which implies
that v, = s5. Thus, the maximal problem solvable in one hour on the new machine is of
size sk.

For A;: We denote the maximal problem solvable by A3 on the new machine by v3, and use
a similar reasoning to obtain the equation 2% /k = 2%, which implies that vs = s3 + Igk.

Problem 4
Determine asymptotic upper and lower bounds for each of the following recurrences. Make
your bounds as tight as possible.

(a) T(n) = 2T (n/2) + nd.

T(n) = nd+ 2T(g)

= n’ 425 +27())

= n”+ﬂgf+4n%)

= 0’425+ 47+ 20(3)
=:n”+ugﬁ+qgﬁ+&ng)
:7ﬁ+ugf+qgﬁ+&%f+uw%f+m

3 n3 ’I’L3 TL3

_ 3, nn . n n
_71+4+d6+m+2%+m
= n*(1+ PRI +..)
- " 1716 64 256
1 1 1 1
< nPl4+-+4+=+—+ ..
n(+2+4+8+w+ )

< m3

We conclude that n® < T'(n) < 2n3, which implies that T'(n) = ©(n?).



(c) T(n) = T(y)

+ 1.

n+T(n—1)
n+(n—-1)+T(n—-2)
n+(n—-1)+(n—-2)+T(n-3)

=n+n-1)+n-2)+(n—-3)+...+2+1
n(n+1)

= O(n?

We “unwind” the recurrence until reaching some constant value of n, for example, until

n < 2:

O(1) ifn <2
Tm%:{ﬂ¢@+1ﬁn>2

. k .
For convenience, assume that n = 22", for some natural value k. Then, we can unwind the
recurrence as follows:

T(n)

14+ T(/22)

1+7T(2%7)
1+1+T(y22)

1+14702%7)

141+ 1+T(V227%)

1+1+1+T(2%7)

1+41+1+..414+7T(2) © the sum is of length &
k+0©(1)
O(k)

Finally, we note that k£ = Iglgn and, hence, T'(n) = O(lglgn).



