Analysis of Algorithms: Assignment 2

Due date: January 21 (Thursday)

Problem 1 (3 points)

Prove the following properties of asymptotic bounds:

(a) If
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.

(b)
$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

(c)
$$f(n) = o(g(n))$$
 if and only if $f(n) = O(g(n))$ and $f(n) \neq \Theta(g(n))$.

Problem 2 (2 points)

Give an example of functions f(n) and g(n) such that $f(n) \neq O(g(n))$ and $f(n) \neq O(g(n))$.

Problem 3 (2 points)

Suppose that we have four algorithms, called A_0 , A_1 , A_2 , and A_3 , whose respective running times are n, n^2 , $\lg n$, and 2^n . If we use a certain old computer, then the maximal sizes of problems solvable in an hour by these algorithms are s_0 , s_1 , s_2 , and s_3 .

Suppose that we have replaced the old computer with a new one, which is k times faster. Now the maximal size of problems solvable in an hour by A_0 is $k \cdot s_0$. What are the maximal problem sizes for the other three algorithms, if we run them on the new computer?

Problem 4 (3 points)

Determine asymptotic upper and lower bounds for each of the following recurrences. Make your bounds as tight as possible.

(a)
$$T(n) = 2T(n/2) + n^3$$
.

(b)
$$T(n) = T(n-1) + n$$
.

(c)
$$T(n) = T(\sqrt{n}) + 1$$
.