Analysis of Algorithms: Results of Exam 2

						X					
						X					
						X					
						X					
						X					
						X					
number			X			X					
of exams			X			X					
			X			X	X				
			X			X	X	Х		Х	
			X		X	X	X	Х		Х	
	X		X	X	X	X	X	Х	Х	Х	
	X	X	X	X	X	X	X	X	X	X	X
	0-50	51-55	56-60	61-65	66-70	71-75	76-80	81-85	86-90	91-95	96-100

The histogram shows the distribution of grades, not including the bonus.

Problem 9

Write an algorithm that reverses all edges of a given graph, that is, replaces every edge (u, v) with the opposite edge (v, u), and returns the resulting graph of reversed edges.

We denote the adjacency list of a vertex u in the initial graph G_1 by $Adj\text{-}List_1[u]$, and the adjacency list of the same vertex in the reversed graph G_2 by $Adj\text{-}List_2[u]$. The following algorithm constructs G_2 in O(V+E) time:

```
REVERSE-EDGES(G_1)

for each u \in V[G_1]

do initialize an empty list Adj-List_2[u]

for each u \in V[G_1]

do for each v \in Adj-List_1[u]

do add u to Adj-List_2[v]

return G_2
```

Problem 10

Suppose that you are using a programming language that supports four operations on real numbers: addition, subtraction, multiplication, and division; the running time of each operation is constant, that is, $\Theta(1)$. Write an efficient algorithm Polynomial(x, A, n) for computing the value of a polynomial. The arguments of the algorithm are a value of x and an array of coefficients A[0..n], and the output is the value of the following polynomial:

$$A[n] \cdot x^{n} + A[n-1] \cdot x^{n-1} + A[n-2] \cdot x^{n-2} + \dots + A[1] \cdot x + A[0].$$

The computation takes $\Theta(n)$ time:

```
\begin{aligned} & \text{Polynomial}(x, A, n) \\ & power \leftarrow 1 \\ & sum \leftarrow A[0] \\ & \textbf{for } i \leftarrow 1 \textbf{ to } n \\ & \textbf{do } power \leftarrow power \cdot x \quad \rhd \text{ It equals } x^i. \\ & sum \leftarrow sum + A[i] \cdot power \quad \rhd \text{ It is } A[i] \cdot x^i + \ldots + A[0]. \end{aligned}
```