Analysis of Algorithms: Results of Exam 1

					Х					
				X	Х		X	X		
				X	Х		X	X		
number				X	X		X	X		
of exams				X	X	X	X	X		
				X	Х	X	X	X		
		X		X	X	X	X	X		
		X		X	X	X	X	X	X	X
	X	X	X	X	Х	X	X	X	X	Х
	0-54	55-59	60-64	65-69	70-74	75-79	80-84	85-89	90-94	95-100

The histogram shows the distribution of grades, not including the bonus.

Problem 10

Suppose that you are using a programming language that allows only integer numbers and supports four operations on them: addition, subtraction, multiplication, and integer division; the running time of each operation is constant, that is, $\Theta(1)$. The result of the integer division of n over m is $\lfloor n/m \rfloor$; for example, $\lfloor 10/3 \rfloor = 3$. The language does not allow fractional numbers, and does not have operations for logarithms and exponentiation. Write an efficient algorithm Power(n, m) that computes n^m , where n and m are positive integers, and give the asymptotic time complexity (Θ -notation) of your algorithm.

Simple algorithm

The following brute-force computation takes $\Theta(m)$ time:

```
SIMPLE-POWER(n, m)

k \leftarrow 1

for i \leftarrow 1 to m

do k \leftarrow k \cdot n

return k
```

Fast algorithm

We next note that, if m is even, then $n^m = (n \cdot n)^{\lfloor m/2 \rfloor}$; similarly, if m is odd, then $n^m = n \cdot (n \cdot n)^{\lfloor m/2 \rfloor}$. These observations lead to a faster algorithm, whose complexity is $\Theta(\lg m)$:

```
Fast-Power(n, m)

if m = 0

then return 1

if \lfloor m/2 \rfloor \cdot 2 = m \Rightarrow \text{Is } m \text{ even?}

then return Fast-Power(n \cdot n, \lfloor m/2 \rfloor)

else return n \cdot \text{Fast-Power}(n \cdot n, \lfloor m/2 \rfloor)
```