Algorithms (COT 6405): Solutions 8

Problem 1

Give a nonrecursive algorithm that prints all elements of a binary search tree in sorted order.

```
Iterative-Tree-Walk \((T)\)
\(x \leftarrow \operatorname{Tree}-\mathrm{Minimum}(r o o t[T])\)
while \(x \neq\) NIL
    do print key[x]
        \(x \leftarrow \operatorname{Tree}-\operatorname{Successor}(x)\)
```

The running time is $\Theta(n)$, where n is the number of nodes in the tree.

Problem 2

Suppose that we have four algorithms, called A_{0}, A_{1}, A_{2}, and A_{3}, whose respective running times are $n, n^{2}, \lg n$, and 2^{n}. If we use a certain old computer, then the maximal sizes of problems solvable in one hour by these algorithms are s_{0}, s_{1}, s_{2}, and s_{3}. Suppose that we have replaced the old computer with a new one, which is k times faster. Now the maximal size of problems solvable in one hour by A_{0} is $k \cdot s_{0}$. What are the maximal problem sizes for the other three algorithms if we run them on the new computer?

For A_{1} : On the old computer, A_{1} solves a problem of size s_{1} in one hour. The running time of this algorithm on a problem of size s_{1} is s_{1}^{2}; hence, $s_{1}^{2}=1$ hour. The new computer is k times faster, which means that the running time of A_{1} is n^{2} / k. We denote the size of the largest problem solvable in one hour on the new computer by v_{1}; then, $v_{1}^{2} / k=1$ hour. We conclude that $v_{1}^{2} / k=s_{1}^{2}$, which implies that $v_{1}=s_{1} \cdot \sqrt{k}$. Thus, the maximal size of a problem solvable in one hour on the new computer is $s_{1} \cdot \sqrt{k}$.
For A_{2} : On the old computer, A_{2} solves a problem of size s_{2} in one hour, which means that $\lg s_{2}=1$ hour. If we denote the maximal size of a problem solvable in one hour on the new computer by v_{2}, then $\lg v_{2} / k=1$ hour. We conclude that $\lg v_{2} / k=\lg s_{2}$, which implies that $v_{2}=s_{2}^{k}$. Thus, the maximal problem solvable in one hour on the new computer is of size s_{2}^{k}.

For A_{3} : We denote the maximal problem solvable by A_{3} on the new computer by v_{3}, and use a similar reasoning to obtain the equation $2^{v_{3}} / k=2^{s_{3}}$, which implies that $v_{3}=s_{3}+\lg k$.

