Algorithms (COT 6405): Solutions 8

Problem 1

Give a nonrecursive algorithm that prints all elements of a binary search tree in sorted order.

ITERATIVE-TREE-WALK(T) $x \leftarrow \text{TREE-MINIMUM}(root[T])$ while $x \neq \text{NIL}$ do print key[x] $x \leftarrow \text{TREE-SUCCESSOR}(x)$

The running time is $\Theta(n)$, where n is the number of nodes in the tree.

Problem 2

Suppose that we have four algorithms, called A_0 , A_1 , A_2 , and A_3 , whose respective running times are n, n^2 , $\lg n$, and 2^n . If we use a certain old computer, then the maximal sizes of problems solvable in one hour by these algorithms are s_0 , s_1 , s_2 , and s_3 . Suppose that we have replaced the old computer with a new one, which is k times faster. Now the maximal size of problems solvable in one hour by A_0 is $k \cdot s_0$. What are the maximal problem sizes for the other three algorithms if we run them on the new computer?

For A_1 : On the old computer, A_1 solves a problem of size s_1 in one hour. The running time of this algorithm on a problem of size s_1 is s_1^2 ; hence, $s_1^2 = 1$ hour. The new computer is k times faster, which means that the running time of A_1 is n^2/k . We denote the size of the largest problem solvable in one hour on the new computer by v_1 ; then, $v_1^2/k = 1$ hour. We conclude that $v_1^2/k = s_1^2$, which implies that $v_1 = s_1 \cdot \sqrt{k}$. Thus, the maximal size of a problem solvable in one hour on the new computer is $s_1 \cdot \sqrt{k}$.

For A_2 : On the old computer, A_2 solves a problem of size s_2 in one hour, which means that $\lg s_2 = 1$ hour. If we denote the maximal size of a problem solvable in one hour on the new computer by v_2 , then $\lg v_2/k = 1$ hour. We conclude that $\lg v_2/k = \lg s_2$, which implies that $v_2 = s_2^k$. Thus, the maximal problem solvable in one hour on the new computer is of size s_2^k .

For A_3 : We denote the maximal problem solvable by A_3 on the new computer by v_3 , and use a similar reasoning to obtain the equation $2^{v_3}/k = 2^{s_3}$, which implies that $v_3 = s_3 + \lg k$.