Algorithms (COT 6405): Solutions 7

Problem 1

Let $A[1 . . n]$ be a sorted array of n distinct integer numbers. Write an efficient algorithm $\operatorname{Index}-\operatorname{Search}(A, n)$ that finds an index i such that $A[i]=i$.
The algorithm is almost identical to Binary-Search, and its time complexity is $O(\lg n)$. It works only for integer arrays, since it is based on the assumption that, for every two indices p and r (where $p \leq r$), we have $A[r]-A[p] \geq r-p$.
$\operatorname{Index}-\operatorname{Search}(A, n)$
$p \leftarrow 1$
$r \leftarrow n$
while $p<r$
do $q=\lfloor(p+r) / 2\rfloor$
if $q \leq A[q]$
then $r \leftarrow q$
else $p \leftarrow q+1$
if $p=A[p]$
then return p
else return 0

Problem 2

We consider an array $A[1 . . n]$ and define a segment sum from p to r :

$$
\operatorname{sum}(p, r)=\sum_{p \leq i \leq r} A[i] .
$$

Write a linear-time algorithm that determines the maximum over all segment sums.
$\operatorname{Max-Segment}(A, n)$
Local-Max $\leftarrow A[1]$
Global-Max $\leftarrow A[1]$
for $i \leftarrow 2$ to n
do Local-Max $\leftarrow \max (A[i]$, Local-Max $+A[i])$
\triangleright Local-Max is the maximum over the segments whose last element is $A[i]$
Global-Max $\leftarrow \max ($ Local-Max, Global-Max)
\triangleright Global-Max is the maximum over all segments in $A[1 . . i]$
return Global-Max

