Algorithms (COT 6405): Solutions 4

Problem 1

Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

$$f(n) = O(g(n))$$

$$f(n) \neq \Theta(g(n))$$

$$f(n) \neq o(g(n))$$

Consider the following two functions:

$$f(n) = 1$$

$$g(n) = \begin{cases} 1 & \text{if } n \text{ is even;} \\ n & \text{if } n \text{ is odd.} \end{cases}$$

Since $f(n) \leq g(n)$, we immediately conclude that f(n) = O(g(n)). For even n, the function f(n) is of the same order as g(n), which means that $f(n) \neq o(g(n))$. On the other hand, for odd n, f(n) grows asymptotically slower than g(n), which implies that $f(n) \neq \Theta(g(n))$.

Problem 2

Prove the following transitivity property of asymptotic bounds:

if
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$.

Since $f(n) = \Theta(g(n))$, we conclude that there are some positive constants c_1 , c_2 , and n_1 such that, for all $n \ge n_1$, we have:

$$c_1g(n) \le f(n) \le c_2g(n).$$

Similarly, since $g(n) = \Theta(h(n))$, there are some positive constants c_3 , c_4 , and n_2 such that, for all $n \ge n_2$, we have:

$$c_3h(n) \le g(n) \le c_4h(n)$$
.

We combine these two inequalities as follows:

$$c_1c_3h(n) \le c_1g(n) \le f(n) \le c_2g(n) \le c_2c_4h(n)$$
.

We now define three new constants, c_5 , c_6 , and n_3 :

$$c_5 = c_1 c_3,$$

 $c_6 = c_2 c_4,$
 $n_3 = \max(n_1, n_2).$

Then, the last inequality implies that, for every $n \geq n_3$, we have:

$$c_5 h(n) \le f(n) \le c_6 h(n).$$

This inequality means that, by definition, $f(n) = \Theta(h(n))$.