
Algorithms (COT 6405): Solutions 10

Problem 1
Write algorithms for converting (a) an adjacency-list representation of a graph into an
adjacency matrix and (b) an adjacency matrix into adjacency lists.

We denote the adjacency list of a vertex u by Adj-List[u], and the adjacency-matrix element
for vertices u and v by Adj-Matrix[u, v]. The time complexity of both algorithms is Θ(V 2).

(a) Converting adjacency lists into a matrix.

Lists-to-Matrix(G) � G is represented by adjacency lists
for each u ∈ V [G]

do for each v ∈ V [G]
do Adj-Matrix[u, v]← 0

for each v ∈ Adj-List[u]
do Adj-Matrix[u, v]← 1

(b) Converting an adjacency matrix into lists.

Matrix-to-Lists(G) � G is represented by an adjacency matrix
for each u ∈ V [G]

do initialize an empty list Adj-List[u]
for each v ∈ V [G]

do if Adj-Matrix[u, v] = 1
then add v to Adj-List[u]

Problem 2
Suppose that G is an undirected graph, and you need to check whether G has cycles. Design
an algorithm that returns true if G is acyclic, and false if G has cycles.

The key observation is that an acyclic undirected graph has at most V−1 edges. To determine
whether a graph G is acyclic, we first count its edges. If the edge counter reaches V , we
immediately return false without counting the rest of edges. On the other hand, if the
number of edges is less than V , we apply DFS to search for cycles. In either case, the overall
running time is O(V ).

1


