
Algorithms: Solutions 8

Problem 1
Write algorithms for converting (a) an adjacency-list representation of a graph into an
adjacency matrix and (b) an adjacency matrix into adjacency lists.

We denote the adjacency list of a vertex u by Adj-List[u], and the adjacency-matrix element
for vertices u and v by Adj-Matrix[u, v]. The time complexity of both algorithms is Θ(V 2).

(a) Converting adjacency lists into a matrix.

Lists-to-Matrix(G) � G is represented by adjacency lists
for each u ∈ V [G]

do for each v ∈ V [G]
do Adj-Matrix[u, v]← 0

for each v ∈ Adj-List[u]
do Adj-Matrix[u, v]← 1

(b) Converting an adjacency matrix into lists.

Matrix-to-Lists(G) � G is represented by an adjacency matrix
for each u ∈ V [G]

do initialize an empty list Adj-List[u]
for each u ∈ V [G]

do for each v ∈ V [G]
do if Adj-Matrix[u, v] = 1

then add v to Adj-List[u]

Problem 2
Suppose that G is a weighted undirected graph, where all weights are integers between 1
and 5, and let u and v be two vertices of G. Give an algorithm that finds a minimal-weight
path from u to v.

We construct a new graph by replacing every edge of length n in the original graph with
n unit edges, as shown in the picture. That is, we replace every edge of length 2 with
two unit edges, every edge of length 3 with three unit edges, and so on. We then run
breadth-first search in the new graph, with the source vertex u, which finds a shortest path
from u to v. If the original graph has V vertices and E edges, then the new graph has at
most V + 4 · E vertices and 5 · E edges, and the running time of the breadth-first search is
O(V + 4 · E + 5 · E) = O(V + E).

n unit edgeslength n

1


