Analysis of Algorithms: Assignment 4

Due date: February 5 (Wednesday)

Problem 1 (6 points)

For each of the following functions, give an asymptotically tight bound (Θ -notation). Make your expression inside Θ as simple as possible.

Example: $2n^3 + 3n^2 = \Theta(n^3)$.

(a)
$$(n+2) \cdot (n+3) \cdot (n+6)$$

(d)
$$2^{6 \cdot n} + 6^{2 \cdot n}$$

(b)
$$(n+2)^2 \cdot (n+3)^3 \cdot (n+6)^6$$

(e)
$$(\sqrt{n})^n + n^{\sqrt{n}}$$

(c)
$$\sqrt{2n+2} \cdot \sqrt[3]{3n+3} \cdot \sqrt[6]{6n+6}$$

(d)
$$2^{6 \cdot n} + 6^{2 \cdot n}$$

(e) $(\sqrt{n})^n + n^{\sqrt{n}}$
(f) $2^{\left(2^{\lg\left(\frac{\log_3 n}{\log_3 2}\right)}\right)}$

Problem 2 (4 points)

Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

$$f(n) = O(g(n))$$

$$f(n) \neq \Theta(g(n))$$

$$f(n) \neq o(g(n))$$