Algorithms: Solutions 7

Problem 1

Write an algorithm for finding the k th smallest element of a given array.
The following algorithm uses the same Partition procedure as Quick-Sort. The averagecase time of this algorithm is $\Theta(n)$, but the worst case is $\Theta\left(n^{2}\right)$.
$\operatorname{Select}(A, n, k)$
$p \leftarrow 1$
$r \leftarrow n$
while $p<r$
do $q=\operatorname{Partition}(A, p, r)$
if $k \leq q$
then $r \leftarrow q$
else $p \leftarrow q+1$
return $A[k]$
You may find a more sophisticated algorithm in Section 9.3 of the textbook; the worst-case time of the textbook algorithm is $\Theta(n)$.

Problem 2

Suppose that $A[1 . . n]$ is an array of integer numbers, and some value k occurs at least $\lfloor n / 2\rfloor+1$ times in this array. Write an efficient algorithm for finding this value.
The "frequent" element is the median of the array; that is, it is the $\lfloor n / 2\rfloor$-th smallest element. We can find it using the Select algorithm from Problem 1, with $k=\lfloor n / 2\rfloor$.

