Algorithms: Solutions 6

Problem 1
Let A[l..n] be a sorted array of n distinct integer numbers. Write an efficient algorithm
INDEX-SEARCH(A, n) that finds an index i such that A[i] = i.

The algorithm is almost identical to BINARY-SEARCH, and its time complexity is O(Ign). It
works only for integer arrays, since it is based on the assumption that, for every two indices
p and r (where p < r), we have A[r] — Alp] > r —p.

INDEX-SEARCH(A, n)
p—1
ren
while p < r
do g = [(p+7)/2]
if ¢ < Alg]
then r «— ¢
elsep«—qg+1
if p = Afp|
then return p
else return 0

Problem 3
A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) What are the expressions for determining the parent of the given element, PARENT(7),
and a j-th child of a given element, CHILD(4, j), where 1 < j < d?

PARENT(i) = {MJ

d
CHiLp(i,j) = (i—1)-d+j+1

(b) Write an efficient implementation of HEAPIFY and HEAP-INSERT for a d-ary heap.

The HEAPIFY algorithm is somewhat different from the binary-heap version, whereas HEAP-
INSERT is identical to the corresponding algorithm for binary heaps. The running time of
HEAPIFY is O(d - log;n), and the running time of HEAP-INSERT is O(log, n).

HEAPIFY (A, i,n,d)
largest < 1
for [«+ CHILD(7, 1) to min(n, CHILD(i,d)) > loop through all children of ¢

do if A[l] > Allargest]

then largest < [

if largest # i

then exchange A[i] < Allargest]|

HEAPIFY(A, largest)

HEAP-INSERT(A, key)
heap-size[A] < heap-size[A] + 1
i < heap-size[A]
while i > 1 and A[PARENT(7)] < key
do Afi] « A[PARENT(i)]
i «—PARENT(7)
Ali] «+ key

