
Algorithms: Solutions 6

Problem 1
Let A[1..n] be a sorted array of n distinct integer numbers. Write an efficient algorithm
Index-Search(A, n) that finds an index i such that A[i] = i.

The algorithm is almost identical to Binary-Search, and its time complexity is O(lg n). It
works only for integer arrays, since it is based on the assumption that, for every two indices
p and r (where p ≤ r), we have A[r]−A[p] ≥ r − p.

Index-Search(A, n)
p← 1
r ← n
while p < r

do q = b(p + r)/2c
if q ≤ A[q]

then r ← q
else p← q + 1

if p = A[p]
then return p
else return 0

Problem 3
A d-ary heap is like a binary heap, but instead of 2 children, nodes have d children.

(a) What are the expressions for determining the parent of the given element, Parent(i),
and a j-th child of a given element, Child(i, j), where 1 ≤ j ≤ d?

Parent(i) =

⌊
i + d− 2

d

⌋

Child(i, j) = (i− 1) · d + j + 1

(b) Write an efficient implementation of Heapify and Heap-Insert for a d-ary heap.

The Heapify algorithm is somewhat different from the binary-heap version, whereas Heap-
Insert is identical to the corresponding algorithm for binary heaps. The running time of
Heapify is O(d · logd n), and the running time of Heap-Insert is O(logd n).

Heapify(A, i, n, d)
largest ← i
for l ← Child(i, 1) to min(n,Child(i, d)) � loop through all children of i

do if A[l] > A[largest]
then largest← l

if largest 6= i
then exchange A[i]↔ A[largest]

Heapify(A, largest)

Heap-Insert(A, key)
heap-size[A]← heap-size[A] + 1
i← heap-size[A]
while i > 1 and A[Parent(i)] < key

do A[i]← A[Parent(i)]
i←Parent(i)

A[i]← key

1


