Algorithms: Solutions 4

Problem 1

Give an example of functions f(n) and g(n) that satisfy all of the following conditions:

$$f(n) = O(g(n))$$

$$f(n) \neq \Theta(g(n))$$

$$f(n) \neq o(g(n))$$

Consider the following two functions:

$$f(n) = 1$$

 $g(n) = \begin{cases} 1 & \text{if } n \text{ is even;} \\ n & \text{if } n \text{ is odd.} \end{cases}$

Since $f(n) \leq g(n)$, we immediately conclude that f(n) = O(g(n)). For even n, the function f(n) is of the same order as g(n), which means that $f(n) \neq o(g(n))$. On the other hand, for odd n, f(n) grows asymptotically slower than g(n), which implies that $f(n) \neq \Theta(g(n))$.

Problem 2

Give a precise mathematical proof of the following asymptotic bounds:

(a)
$$\sqrt{n} = o(n)$$

We need to show that, for every c > 0, there is some n_0 such that, for all $n \ge n_0$, we have $\sqrt{n} < c \cdot n$. We define n_0 as follows:

$$n_0 = \left\lceil \frac{1}{c^2} + 1 \right\rceil.$$

Then, for every $n \ge n_0$, we have $n > 1/c^2$, which implies that $\sqrt{n} \cdot c > 1$ and readily leads to the desired inequality:

$$\sqrt{n} < \sqrt{n} \cdot (\sqrt{n} \cdot c) = n \cdot c.$$

(b)
$$(n+1)^a = \Theta(n^a)$$

If $n \geq 1$, then

$$(n+1)^a \le (2n)^a = 2^a \cdot n^a$$
.

Thus, we get the following bounds for $(n+1)^a$:

$$n^a \le (n+1)^a \le 2^a \cdot n^a,$$

which implies that $(n+1)^a = \Theta(n^a)$.